Review: Canadian beef grading – Opportunities to identify carcass and meat quality traits valued by consumers

作者: Jennifer L. Aalhus , Óscar López-Campos , Nuria Prieto , Argenis Rodas-González , Michael E. R. Dugan

DOI: 10.4141/CJAS-2014-038

关键词: Agricultural scienceLean meatBusinessQuality characteristicsGrading (education)

摘要: Aalhus, J. L., Lopez-Campos, O., Prieto, N., Rodas-Gonzalez, A., Dugan, M. E. R., Uttaro, B. and Juarez, 2014. Review: Canadian beef grading – Opportunities to identify carcass meat quality traits valued by consumers. Can. Anim. Sci. 94: 545–556. Beef value is in the eye, mouth or mind of consumer; however, currently, producers are paid on basis grade. In general, affluent consumers becoming more discerning willing pay for both credence measureable differences. The system youthful carcasses identifies lean yield attributes, whereas mature broadly categorized. exist improve prediction better characteristics beef, obtain additional from through muscle profiling. Individual identification along with development database systems like InfoXchange System (BIXS) will allow a parad...

参考文章(70)
M. E. Dikeman, Cattle Production Systems to Meet Future Consumer Demands Journal of Animal Science. ,vol. 59, pp. 1631- 1643 ,(1984) , 10.2527/JAS1984.5961631X
A D Mitchell, J M Conway, W J Potts, Body composition analysis of pigs by dual-energy x-ray absorptiometry. Journal of Animal Science. ,vol. 74, pp. 2663- 2671 ,(1996) , 10.2527/1996.74112663X
Shirley Anderson, S Aldana, M Beggs, J Birkey, A Conquest, R Conway, T Hemminger, J Herrick, C Hurley, C Ionita, J Longbind, S McMaignal, A Milu, T Mitchell, K Nanke, A Perez, M Phelps, J Reitz, A Salazar, T Shinkle, M Strampe, K Van Horn, J Williams, C Wipperfurth, S Zelten, S Zerr, , Determination of fat, moisture, and protein in meat and meat products by using the FOSS FoodScan Near-Infrared Spectrophotometer with FOSS Artificial Neural Network Calibration Model and Associated Database: collaborative study. Journal of AOAC International. ,vol. 90, pp. 1073- 1083 ,(2007) , 10.1093/JAOAC/90.4.1073
R.J. Polkinghorne, J.M. Thompson, Meat standards and grading: a world view. Meat Science. ,vol. 86, pp. 227- 235 ,(2010) , 10.1016/J.MEATSCI.2010.05.010
SALEH BEA, MC Teich, Fundamentals of Photonics Optical and Digital Image Processing: Fundamentals and Applications. pp. 25- 48 ,(2011) , 10.1002/9783527635245.CH2
D. J. Vote, K. E. Belk, J. D. Tatum, J. A. Scanga, G. C. Smith, Online prediction of beef tenderness using a computer vision system equipped with a BeefCam module1 Journal of Animal Science. ,vol. 81, pp. 457- 465 ,(2003) , 10.2527/2003.812457X
H B Hedrick, J L Forrest, Judge, R A Merkel, E D Aberle, Principles of Meat Science ,(1990)
M F Miller, M A Carr, C B Ramsey, K L Crockett, L C Hoover, Consumer thresholds for establishing the value of beef tenderness Journal of Animal Science. ,vol. 79, pp. 3062- 3068 ,(2001) , 10.2527/2001.79123062X
Lotte Bøge Lyndgaard, Klavs Martin Sørensen, Frans van den Berg, Søren Balling Engelsen, None, Depth profiling of porcine adipose tissue by Raman spectroscopy Journal of Raman Spectroscopy. ,vol. 43, pp. 482- 489 ,(2012) , 10.1002/JRS.3067