Trajectory Clustering Aided Personalized Driver Intention Prediction for Intelligent Vehicles

作者: Dewei Yi , Jinya Su , Cunjia Liu , Wen-Hua Chen

DOI: 10.1109/TII.2018.2890141

关键词: Machine learningCluster analysisArtificial intelligenceAkaike information criterionPolynomial regressionTrajectory clusteringBayesian optimizationComputer scienceClassifier (UML)

摘要: Early driver intention prediction plays a significant role in intelligent vehicles. Drivers exhibit various driving characteristics impairing the performance of conventional algorithms using …

参考文章(36)
William B. Rouse, Adaptive aiding for human/computer control Human Factors. ,vol. 30, pp. 431- 443 ,(1988) , 10.1177/001872088803000405
James Franklin, The elements of statistical learning : data mining, inference,and prediction The Mathematical Intelligencer. ,vol. 27, pp. 83- 85 ,(2005) , 10.1007/BF02985802
Benedicte Bougler, Christopher Nowakowski, Delphine Cody, California Intersection Decision Support: A Driver-Centered Approach to Left-Turn Collision Avoidance System Design PATH research report. ,(2008)
Richard A Olshen, Charles J Stone, Leo Breiman, Jerome H Friedman, Classification and regression trees ,(1983)
Asher Bender, James R. Ward, Stewart Worrall, Eduardo M. Nebot, Predicting Driver Intent from Models of Naturalistic Driving international conference on intelligent transportation systems. pp. 1609- 1615 ,(2015) , 10.1109/ITSC.2015.262
Lie Guo, Ping-Shu Ge, Ming-Heng Zhang, Lin-Hui Li, Yi-Bing Zhao, Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine Expert Systems With Applications. ,vol. 39, pp. 4274- 4286 ,(2012) , 10.1016/J.ESWA.2011.09.106
Vadim Butakov, Petros Ioannou, Personalized Driver/Vehicle Lane Change Models for ADAS IEEE Transactions on Vehicular Technology. ,vol. 64, pp. 4422- 4431 ,(2015) , 10.1109/TVT.2014.2369522
Piyush Gupta, Tim Dallas, Feature Selection and Activity Recognition System Using a Single Triaxial Accelerometer IEEE Transactions on Biomedical Engineering. ,vol. 61, pp. 1780- 1786 ,(2014) , 10.1109/TBME.2014.2307069