Parametric estimation of P(X > Y) for normal distributions in the context of probabilistic environmental risk assessment

作者: Rianne Jacobs , Andriëtte A. Bekker , Hilko van der Voet , Cajo J.F. ter Braak

DOI: 10.7717/PEERJ.1164

关键词: Context (language use)Minimax estimatorParametric statisticsConfidence intervalData miningComputer scienceNormal distributionRisk assessmentSample size determinationEstimatorStatistics

摘要: Estimating the risk, P(X > Y), in probabilistic environmental risk assessment of nanoparticles is a problem when confronted by potentially small risks and sample sizes exposure concentration X and/or effect Y. This illustrated motivating case study aquatic nano-Ag. A non-parametric estimator based on data alone not sufficient as it limited size. In this paper, we investigate maximum gain possible making strong parametric assumptions opposed to no at all. We compare likelihood Bayesian estimators with influence size (interval) via simulation. found that enable us estimate bound for smaller risks. Also, outperforms terms coverage interval lengths is, therefore, preferred our study.

参考文章(47)
M B Balsley, Example of a trend: food purchasing program, Chicago Hospital Council. Journal of The American Dietetic Association. ,vol. 66, pp. 162- 165 ,(1975)
Joanna S. Jaworska, Theo P. Traas, Tom Aldenberg, Normal Species Sensitivity Distributions and Probabilistic Ecological Risk Assessment CRC Press. pp. 73- 126 ,(2001) , 10.1201/9781420032314-9
Wojtek J. Krzanowski, David J. Hand, ROC Curves for Continuous Data ,(2009)
Gauri Sankar Datta, Trevor J. Sweeting, Probability matching priors ,(2004)
Karen Vines, Nicky Best, Kate Cowles, Martyn Plummer, CODA: convergence diagnosis and output analysis for MCMC ,(2006)
Alessandro Barbiero, Confidence Intervals for Reliability of Stress-Strength Models in the Normal Case Communications in Statistics - Simulation and Computation. ,vol. 40, pp. 907- 925 ,(2011) , 10.1080/03610918.2011.560728
Samaradasa Weerahandi, Richard A. Johnson, Testing reliability in a stress-strength model when X and Y are normally distributed Technometrics. ,vol. 34, pp. 83- 91 ,(1992) , 10.2307/1269555
J. D. Church, Bernard Harris, The Estimation of Reliability from Stress-Strength Relationships Technometrics. ,vol. 12, pp. 49- 54 ,(1970) , 10.1080/00401706.1970.10488633
Peter Enis, Seymour Geisser, Estimation of the Probability that Y<X Journal of the American Statistical Association. ,vol. 66, pp. 162- 168 ,(1971) , 10.1080/01621459.1971.10482238