On the advantages of a geometrical viewpoint in the derivation of Lagrange’s equations for a rigid continuum

作者: J. Casey

DOI: 10.1007/978-3-0348-9229-2_41

关键词: Partial derivativeRigid bodyAngular momentumConfiguration spaceMathematical analysisContinuum (topology)MathematicsDynamics (mechanics)D'Alembert's principleVirtual work

摘要: By way of background, it may be remarked that for a body consisting finitely many particles, several different derivations Lagrange’s equations can found in the dynamics literature.1 These include: proceeding from Newton’s second law by an unenlightening manipulation partial derivatives; those employing principle virtual work; and appealing to variational principles.

参考文章(24)
Leopold Alexander Pars, A Treatise on Analytical Dynamics ,(1981)
C. Truesdell, R. Toupin, The Classical Field Theories Handbuch der Physik. ,vol. 2, pp. 226- 858 ,(1960) , 10.1007/978-3-642-45943-6_2
Cornelius Lanczos, The Variational Principles of Mechanics ,(1949)
Goodeve, T. M. , b., Principles of Mechanics ,(2008)
M. M. G. Ricci, T. Levi-Civita, Méthodes de calcul différentiel absolu et leurs applications Mathematische Annalen. ,vol. 54, pp. 125- 201 ,(1900) , 10.1007/BF01454201
J. Casey, A Treatment of Rigid Body Dynamics Journal of Applied Mechanics. ,vol. 50, pp. 905- 907 ,(1983) , 10.1115/1.3167171
James Casey, Geometrical derivation of Lagrange’s equations for a system of particles American Journal of Physics. ,vol. 62, pp. 836- 847 ,(1994) , 10.1119/1.17470