Three- and four-dimensional surfaces

作者: R.E. Barnhill , F.F. Little

DOI: 10.1216/RMJ-1984-14-1-77

关键词: MathematicsTrilinear interpolationInterpolationMathematical analysisLinear interpolationBilinear interpolationSpline interpolationPiecewiseGeometryBicubic interpolationNearest-neighbor interpolation

摘要: The representation and approximation of three- four-dimensional surfaces is accomplished by means local, piecewise defined, smooth interpolation methods. In order to interpolate arbitrarily located data, the schemes are defined on geometric domains triangles or tetrahedra, respectively.

参考文章(5)
Robert E. Barnhill, Representation and Approximation of Surfaces Mathematical Software#R##N#Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, March 28–30, 1977. pp. 69- 120 ,(1977) , 10.1016/B978-0-12-587260-7.50008-X
D. J. F. Ewing, A. J. Fawkes, J. R. Griffiths, Rules governing the numbers of nodes and elements in a finite element mesh International Journal for Numerical Methods in Engineering. ,vol. 2, pp. 597- 600 ,(1970) , 10.1002/NME.1620020411
P. J. Green, R. Sibson, Computing Dirichlet Tessellations in the Plane The Computer Journal. ,vol. 21, pp. 168- 173 ,(1978) , 10.1093/COMJNL/21.2.168
Gregory M. Nielson, The side-vertex method for interpolation in triangles☆ Journal of Approximation Theory. ,vol. 25, pp. 318- 336 ,(1979) , 10.1016/0021-9045(79)90020-0
R. E. Barnhill, J. A. Gregory, Polynomial interpolation to boundary data on triangles Mathematics of Computation. ,vol. 29, pp. 726- 735 ,(1975) , 10.1090/S0025-5718-1975-0375735-3