Bias-corrected geometric-type estimators of the tail index

作者: Margarida Brito , Laura Cavalcante , Ana Cristina Moreira Freitas

DOI: 10.1088/1751-8113/49/21/214003

关键词: Extreme value theoryApplied mathematicsEstimatorAsymptotic theory (statistics)StatisticsMathematicsOrder (group theory)Confidence intervalType (model theory)Tail index

摘要: The estimation of the tail index is a central topic in extreme value analysis. We consider geometric-type estimator for and study its asymptotic properties. propose here two equivalent bias-corrected estimators establish corresponding behaviour. also apply suggested to construct confidence intervals this parameter. Some simulations order illustrate finite sample behaviour proposed are provided.

参考文章(26)
Peter Hall, On Some Simple Estimates of an Exponent of Regular Variation Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 44, pp. 37- 42 ,(1982) , 10.1111/J.2517-6161.1982.TB01183.X
Margarida Brito, Laura Cavalcante, Ana Cristina Moreira Freitas, Modeling of Extremal Earthquakes CIM Series in Mathematical Sciences. pp. 39- 60 ,(2015) , 10.1007/978-3-319-16121-1_3
Sándor Csörgő, László Viharos, Estimating the tail index Asymptotic Methods in Probability and Statistics. pp. 833- 881 ,(1998) , 10.1016/B978-044450083-0/50055-1
Valerio Lucarini, Davide Faranda, Giorgio Turchetti, Sandro Vaienti, Extreme value theory for singular measures. Chaos. ,vol. 22, pp. 023135- ,(2012) , 10.1063/1.4718935
Marie Kratz, Sidney I. Resnick, The qq-estimator and heavy tails Stochastic Models. ,vol. 12, pp. 699- 724 ,(1996) , 10.1080/15326349608807407
Margarida Brito, Ana Cristina Moreira Freitas, Weak convergence of a bootstrap geometric-type estimator with applications to risk theory Insurance Mathematics & Economics. ,vol. 38, pp. 571- 584 ,(2006) , 10.1016/J.INSMATHECO.2005.12.002
Annette J. Dobson, Introduction to Statistical Modelling ,(1983)
M. Ivette Gomes, Frederico Caeiro, Fernanda Figueiredo, Bias reduction of a tail index estimator through an external estimation of the second-order parameter Statistics. ,vol. 38, pp. 497- 510 ,(2004) , 10.1080/02331880412331284304
J. Schultze, J. Steinebach, ON LEAST SQUARES ESTIMATES OF AN EXPONENTIAL TAIL COEFFICIENT Statistics & Risk Modeling. ,vol. 14, pp. 353- 372 ,(1996) , 10.1524/STRM.1996.14.4.353