Edge-based nonlinear diffusion for finite element approximations of convection–diffusion equations and its relation to algebraic flux-correction schemes

作者: Gabriel R. Barrenechea , Erik Burman , Fotini Karakatsani

DOI: 10.1007/S00211-016-0808-Z

关键词: Flux limiterFinite element methodMathematical analysisDiffusion (business)Convection–diffusion equationUniquenessMathematicsLipschitz continuityMaximum principleNumerical analysis

摘要: For the case of approximation convection---diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes scheme satisfy discrete maximum principle. The shown to be Lipschitz and linearity preserving. Using these properties we provide full stability error analysis, which, in dominated regime, shows existence, uniqueness optimal convergence. Then algebraic flux correction method recalled show present can interpreted as an for particular definition limiters. performance illustrated on some numerical test cases two space dimensions.

参考文章(22)
Jean-Luc Guermond, Alexandre Ern, Theory and practice of finite elements ,(2004)
Neil S Trudinger, David G Gilbarg, Elliptic Partial Differential Equations of Second Order ,(2018)
Gabriel R. Barrenechea, Volker John, Petr Knobloch, Some analytical results for an algebraic flux correction scheme for a steady convection–diffusion equation in one dimension Ima Journal of Numerical Analysis. ,vol. 35, pp. 1729- 1756 ,(2015) , 10.1093/IMANUM/DRU041
D. Kuzmin, S. Turek, Flux Correction Tools for Finite Elements Journal of Computational Physics. ,vol. 175, pp. 525- 558 ,(2002) , 10.1006/JCPH.2001.6955
Alexandre Ern, Jean-Luc Guermond, Weighting the Edge Stabilization SIAM Journal on Numerical Analysis. ,vol. 51, pp. 1655- 1677 ,(2013) , 10.1137/120867482
Steven T Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids Journal of Computational Physics. ,vol. 31, pp. 335- 362 ,(1979) , 10.1016/0021-9991(79)90051-2
Jinchao Xu, Ludmil Zikatanov, A monotone finite element scheme for convection-diffusion equations Mathematics of Computation. ,vol. 68, pp. 1429- 1446 ,(1999) , 10.1090/S0025-5718-99-01148-5