Blocks of affine quantum Schur algebras

作者: Qiang Fu

DOI:

关键词: Pure mathematicsAffine Lie algebraAffine planeQuantum affine algebraSchur's lemmaSchur algebraAffine groupAffine representationMathematicsSchur's theorem

摘要: The affine quantum Schur algebra is a certain important infinite dimensional whose representation theory closely related to that of $\frak{gl}_n$. Finite irreducible modules for the ${\mathcal S}_{\vartriangle}(n,r)_{v}$ were classified in \cite{DDF}, where $v\in{\mathbb C}^*$ not root unity. We will classify blocks this paper.

参考文章(20)
A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of ${\rm GL}(n)$ Annales Scientifiques De L Ecole Normale Superieure. ,vol. 13, pp. 165- 210 ,(1980) , 10.24033/ASENS.1379
Jens Carsten Jantzen, Lectures on quantum groups ,(1995)
Vyjayanthi Chari, A guide to quantum groups ,(1994)
Vyjayanthi Chari, Braid group actions and tensor products International Mathematics Research Notices. ,vol. 2002, pp. 357- 382 ,(2002) , 10.1155/S107379280210612X
A.W Goldie, Localization in non-commutative noetherian rings Journal of Algebra. ,vol. 5, pp. 89- 105 ,(1967) , 10.1016/0021-8693(67)90028-2
S. Ariki, T. Terasoma, H. Yamada, Schur-Weyl Reciprocity for the Hecke Algebra of (Z/rZ) ≀ Sn Journal of Algebra. ,vol. 178, pp. 374- 390 ,(1995) , 10.1006/JABR.1995.1354
J. D. Rogawski, On modules over the Hecke algebra of a p -adic group Inventiones Mathematicae. ,vol. 79, pp. 443- 465 ,(1985) , 10.1007/BF01388516