Dynamical Systems as Temporal Feature Spaces

作者: Peter Tino

DOI:

关键词: Phase transitionState (functional analysis)Computer scienceExponential growthSeries (mathematics)Free parameterOperator (computer programming)Dynamical systems theoryKernel (linear algebra)Kernel (statistics)Feature vectorState spaceFeature (computer vision)TopologyKernel method

摘要: Parameterized state space models in the form of recurrent networks are often used machine learning to learn from data streams exhibiting temporal dependencies. To break black box nature such it is important understand dynamical features input driving time series that formed space. We propose a framework for rigorous analysis representations vanishing memory as echo (ESN). In particular, we consider feature and readout mapping kernel operating show that: (1) The usual ESN strategy randomly generating input-to-state, well coupling leads shallow representations, corresponding cross-correlation operator with fast exponentially decaying coefficients; (2) Imposing symmetry on dynamic yields constrained matching straightforward motifs or highest frequency; (3) Simple cycle high-dimensional reservoir topology specified only through two free parameters can implement deep kernels rich variety motifs. quantify richness imposed by demonstrate associated topology, undergoes phase transition close edge stability.

参考文章(53)
Oliver Obst, Joschka Boedecker, Minoru Asada, Improving recurrent neural network performance using transfer entropy international conference on neural information processing. pp. 193- 200 ,(2010) , 10.1007/978-3-642-17534-3_24
Oliver Obst, Joschka Boedecker, Guided Self-Organization of Input-Driven Recurrent Neural Networks arXiv: Neural and Evolutionary Computing. pp. 319- 340 ,(2014) , 10.1007/978-3-642-53734-9_11
Joseph T. Lizier, Mikhail Prokopenko, Albert Y. Zomaya, Detecting Non-trivial Computation in Complex Dynamics Advances in Artificial Life. pp. 895- 904 ,(2007) , 10.1007/978-3-540-74913-4_90
M.D. Skowronski, J.G. Harris, Minimum mean squared error time series classification using an echo state network prediction model international symposium on circuits and systems. pp. 3153- 3156 ,(2006) , 10.1109/ISCAS.2006.1693294
L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, Information processing using a single dynamical node as complex system Nature Communications. ,vol. 2, pp. 468- 468 ,(2011) , 10.1038/NCOMMS1476
K. Bush, C. Anderson, Modeling reward functions for incomplete state representations via echo state networks international joint conference on neural network. ,vol. 5, pp. 2995- 3000 ,(2005) , 10.1109/IJCNN.2005.1556402
Matthew H. Tong, Adam D. Bickett, Eric M. Christiansen, Garrison W. Cottrell, 2007 Special Issue: Learning grammatical structure with Echo State Networks Neural Networks. ,vol. 20, pp. 424- 432 ,(2007) , 10.1016/J.NEUNET.2007.04.013
Benjamin Schrauwen, Marion Wardermann, David Verstraeten, Jochen J. Steil, Dirk Stroobandt, Improving reservoirs using intrinsic plasticity Neurocomputing. ,vol. 71, pp. 1159- 1171 ,(2008) , 10.1016/J.NEUCOM.2007.12.020
Izzet B Yildiz, Herbert Jaeger, Stefan J Kiebel, None, Re-visiting the echo state property Neural Networks. ,vol. 35, pp. 1- 9 ,(2012) , 10.1016/J.NEUNET.2012.07.005
Leonard E. Baum, Ted Petrie, Statistical Inference for Probabilistic Functions of Finite State Markov Chains Annals of Mathematical Statistics. ,vol. 37, pp. 1554- 1563 ,(1966) , 10.1214/AOMS/1177699147