Evaluation of endopolyploidy patterns in selected Capsicum and Nicotiana species ( Solanaceae )

作者: Vladislav Kolarčik , Pavol Mártonfi , Lukáš Koprivý , Viera Fráková , Marianna Paľová

DOI: 10.1007/S11756-021-00704-1

关键词: BotanySolanaceaeStamenPetiole (botany)Mitotic cell cycleNicotianaPloidyChromosome separationPolyploidBiology

摘要: Endopolyploidy has arisen countless times in angiosperms, and endopolyploidisation is an important genetic feature many plant species. It generated through a process called endoreduplication, where mitotic cell cycle shifts into endocycle, DNA replication occurs without chromosome separation cytokinesis. been well established that endopolyploidy plays vital role during growth development various stress responses. Many agriculturally families are polysomatic, including the Solanaceae. To better understand characterise polysomatic species within Solanaceae, we studied mature vegetative reproductive organs (root, stem, lower leaf petiole, lamina, flower pedicel, calyx, corolla, pistil stamen tissue) of representative diploids genus Capsicum, i.e. C. annuum, baccatum, chinense diploid tetraploids Nicotiana, N. rustica (4x), sylvestris (2x) tabacum by means flow cytometry. The presence 2C–16C nuclei (rarely 32C) was detected, degree expressed using four different parameters for each organ analysed. In organs, endoreduplication index (EI) reached maximum 0.84 on average roots whereas lowest values (EI < 0.10) were detected lamina same Among investigated tabacum, EI pistils higher than stamens. When polyploid Nicotiana compared, possessed level polyploids tabacum. this study, also determined genome size species, which ranged from 5.51 picograms (pg) to 10.43 pg rustica.

参考文章(91)
Brian C. Husband, Sarah J. Baldwin, Jan Suda, The Incidence of Polyploidy in Natural Plant Populations: Major Patterns and Evolutionary Processes Plant Genome Diversity Volume 2. pp. 255- 276 ,(2013) , 10.1007/978-3-7091-1160-4_16
Jérôme Joubès, Christian Chevalier, Endoreduplication in higher plants. Plant Molecular Biology. ,vol. 43, pp. 735- 745 ,(2000) , 10.1023/A:1006446417196
Pavel Trávníček, Jan Ponert, Tomáš Urfus, Jana Jersáková, Jan Vrána, Eva Hřibová, Jaroslav Doležel, Jan Suda, Challenges of flow‐cytometric estimation of nuclear genome size in orchids, a plant group with both whole‐genome and progressively partial endoreplication Cytometry Part A. ,vol. 87, pp. 958- 966 ,(2015) , 10.1002/CYTO.A.22681
David W. Galbraith, Endoreduplicative standards for calibration of flow cytometric C-Value measurements. Cytometry Part A. ,vol. 85, pp. 368- 374 ,(2014) , 10.1002/CYTO.A.22440
Valéria Kocová, Vladislav Kolarcik, Nikola Straková, Pavol Mártonfi, ENDOPOLYPLOIDY PATTERNS IN ORGANS OF TRIFOLIUM SPECIES (FABACEAE) Acta Biologica Cracoviensia Series Botanica. ,vol. 56, pp. 111- 120 ,(2014) , 10.2478/ABCSB-2014-0011
L. D. BAINARD, J. D. BAINARD, S. G. NEWMASTER, J. N. KLIRONOMOS, Mycorrhizal symbiosis stimulates endoreduplication in angiosperms Plant Cell and Environment. ,vol. 34, pp. 1577- 1585 ,(2011) , 10.1111/J.1365-3040.2011.02354.X
Brian P. Dilkes, Ricardo A. Dante, Cintia Coelho, Brian A. Larkins, Genetic analyses of endoreduplication in Zea mays endosperm: evidence of sporophytic and zygotic maternal control. Genetics. ,vol. 160, pp. 1163- 1177 ,(2002) , 10.1093/GENETICS/160.3.1163
LJW. Gilissen, M. J. van Staveren, J. C. Hakkert, MJM. Smulders, Competence for Regeneration during Tobacco Internodal Development (Involvement of Plant Age, Cell Elongation Stage, and Degree of Polysomaty). Plant Physiology. ,vol. 111, pp. 1243- 1250 ,(1996) , 10.1104/PP.111.4.1243
Jillian D. Bainard, Thomas A. Henry, Luke D. Bainard, Steven G. Newmaster, DNA content variation in monilophytes and lycophytes: large genomes that are not endopolyploid Chromosome Research. ,vol. 19, pp. 763- 775 ,(2011) , 10.1007/S10577-011-9228-1