Secure Quantum Key Distribution with an Uncharacterized Source

作者: Masato Koashi , John Preskill

DOI: 10.1103/PHYSREVLETT.90.057902

关键词: TopologyKey sizeQuantum cryptographyQuantum networkBB84Key (cryptography)Basis (linear algebra)Quantum mechanicsComputer scienceQuantum key distributionBit error rate

摘要: We prove the security of Bennett-Brassard (BB84) quantum key distribution protocol for an arbitrary source whose averaged states are basis independent, a condition that is automatically satisfied if suitably designed. The proof based on observation that, to adversary, extraction process equivalent measurement in sigma-hatx performed pure sigma-hatz-basis eigenstate. dependence achievable length bit error rate same as established by Shor and Preskill [Phys. Rev. Lett. 85, 441 (2000)] perfect source, indicating defects efficiently detected protocol.

参考文章(6)
Dominic Mayers, Unconditional security in quantum cryptography Journal of the ACM. ,vol. 48, pp. 351- 406 ,(2001) , 10.1145/382780.382781
Hoi-Kwong Lo, Hoi Fung Chau, Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances Science. ,vol. 283, pp. 2050- 2056 ,(1999) , 10.1126/SCIENCE.283.5410.2050
Peter W. Shor, John Preskill, Simple proof of security of the BB84 quantum key distribution protocol Physical Review Letters. ,vol. 85, pp. 441- 444 ,(2000) , 10.1103/PHYSREVLETT.85.441
Daniel Gottesman, John Preskill, Secure quantum key distribution using squeezed states Physical Review A. ,vol. 63, pp. 022309- ,(2001) , 10.1103/PHYSREVA.63.022309
A. Uhlmann, The “transition probability” in the state space of a ∗-algebra Reports on Mathematical Physics. ,vol. 9, pp. 273- 279 ,(1976) , 10.1016/0034-4877(76)90060-4
Richard Jozsa, Fidelity for Mixed Quantum States Journal of Modern Optics. ,vol. 41, pp. 2315- 2323 ,(1994) , 10.1080/09500349414552171