Spectral structure of the Neumann–Poincaré operator on tori

作者: Kazunori Ando , Yong-Gwan Ji , Hyeonbae Kang , Daisuke Kawagoe , Yoshihisa Miyanishi

DOI: 10.1016/J.ANIHPC.2019.05.002

关键词: Hilbert spaceNumerical rangeBounded functionNeumann–Poincaré operatorMathematicsOperator (computer programming)Eigenvalues and eigenvectorsCompact operatorPure mathematicsBoundary (topology)

摘要: Abstract We address the question whether there is a three-dimensional bounded domain such that Neumann–Poincare operator defined on its boundary has infinitely many negative eigenvalues. It proved in this paper tori have property. done by decomposing into self-adjoint compact operators Hilbert space circle using toroidal coordinate system and Fourier basis, then proving numerical range of decomposition both positive values.

参考文章(32)
Habib Ammari, Pierre Millien, Matias Ruiz, Hai Zhang, Mathematical Analysis of Plasmonic Nanoparticles: The Scalar Case Archive for Rational Mechanics and Analysis. ,vol. 224, pp. 597- 658 ,(2017) , 10.1007/S00205-017-1084-5
Mikyoung Lim, Symmetry of a boundary integral operator and a characterization of a ball Illinois Journal of Mathematics. ,vol. 45, pp. 537- 543 ,(2001) , 10.1215/IJM/1258138354
Rainer Kress, David L. Colton, Integral equation methods in scattering theory ,(1983)
Hyeonbae Kang, Mikyoung Lim, Sanghyeon Yu, Spectral Resolution of the Neumann–Poincaré Operator on Intersecting Disks and Analysis of Plasmon Resonance Archive for Rational Mechanics and Analysis. ,vol. 226, pp. 83- 115 ,(2017) , 10.1007/S00205-017-1129-9
Jason W. Bates, On toroidal Green’s functions Journal of Mathematical Physics. ,vol. 38, pp. 3679- 3691 ,(1997) , 10.1063/1.532061
John F Ahner, Richard F Arenstorf, On the eigenvalues of the electrostatic integral operator Journal of Mathematical Analysis and Applications. ,vol. 117, pp. 187- 197 ,(1986) , 10.1016/0022-247X(86)90255-6
R. R. Coifman, A. McIntosh, Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur $L^2$ pour les courbes lipschitziennes Annals of Mathematics. ,vol. 116, pp. 361- 387 ,(1982) , 10.2307/2007065
Erich Martensen, A Spectral Property of the Electrostatic Integral Operator Journal of Mathematical Analysis and Applications. ,vol. 238, pp. 551- 557 ,(1999) , 10.1006/JMAA.1999.6538
Karl-Mikael Perfekt, Mihai Putinar, Spectral bounds for the Neumann-Poincaré operator on planar domains with corners Journal D Analyse Mathematique. ,vol. 124, pp. 39- 57 ,(2014) , 10.1007/S11854-014-0026-5