Model Equations: Parameter Estimation

作者: Boris P. Bezruchko , Dmitry A. Smirnov

DOI: 10.1007/978-3-642-12601-7_8

关键词: State (functional analysis)PhysicsDimension (graph theory)CombinatoricsCurrent (mathematics)

摘要: Motions and processes observed in nature are extremely diverse complex. Therefore, opportunities to model them with explicit functions of time rather restricted. Much greater potential is expected from difference differential equations (Sects. 3.3, 3.5 3.6). Even a simple one-dimensional map quadratic maximum capable demonstrating chaotic behaviour (Sect. 6.2). Such contrast describe how future state an object depends on its current or velocity the change itself. However, technology for construction these more sophisticated models, including parameter estimation selection approximating functions, basically same. A example: \(\eta_{n+1}=f(\eta_n,\textbf{c})\) differs obtaining temporal dependence \(\eta=f(t,\textbf{c})\) only that one needs draw curve through experimental data points plane \((\eta_n,\eta_{n+1})\) (Fig. 8.1a–c) than \((t,\eta) \) ( Fig. 7.1). To construct ODEs \({{{\mathrm{d}}{\mathbf{x}}} \mathord{\left/ {\vphantom {{{\mathrm{d}}{\mathbf{x}}} {{\mathrm{d}}t}}} \right. \kern-\nulldelimiterspace} {{\mathrm{d}}t}} = {\mathbf{f}}({\mathbf{x}},{\mathbf{c}})\), may first get series derivatives \({{\mathrm{d}}x_k}\mathord{\left/{\vphantom {{{\mathrm{d}}x_k}{{\mathrm{d}}t}}} {{\mathrm{d}}t}\) (\(k=1,{\ldots},\ D\), where D dimension) via numerical differentiation then approximate x usual way. Model can be multidimensional, which another models as time.

参考文章(39)
O. Ya. Butkovsky, Yu. A. Kravtsov, M. Yu. Logunov, Error Estimate for Retrieving Parameters of a Nonlinear Map from Noisy Chaotic Time Series Radiophysics and Quantum Electronics. ,vol. 45, pp. 48- 58 ,(2002) , 10.1023/A:1015244623440
Shun-ichi Amari, Asymptotic Theory of Estimation Springer, New York, NY. pp. 128- 160 ,(1985) , 10.1007/978-1-4612-5056-2_5
H. G. Bock, Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics Springer Series in Chemical Physics. pp. 102- 125 ,(1981) , 10.1007/978-3-642-68220-9_8
Anil Maybhate, R. E. Amritkar, Use of synchronization and adaptive control in parameter estimation from a time series Physical Review E. ,vol. 59, pp. 284- 293 ,(1999) , 10.1103/PHYSREVE.59.284
Chao Tao, Yu Zhang, Gonghuan Du, Jack J. Jiang, Estimating model parameters by chaos synchronization. Physical Review E. ,vol. 69, pp. 036204- ,(2004) , 10.1103/PHYSREVE.69.036204
A. Sitz, U. Schwarz, J. Kurths, H. U. Voss, Estimation of parameters and unobserved components for nonlinear systems from noisy time series. Physical Review E. ,vol. 66, pp. 016210- ,(2002) , 10.1103/PHYSREVE.66.016210
V. F. Pisarenko, D. Sornette, Statistical methods of parameter estimation for deterministically chaotic time series. Physical Review E. ,vol. 69, pp. 036122- ,(2004) , 10.1103/PHYSREVE.69.036122
Mike Davies, Noise reduction schemes for chaotic time series Physica D: Nonlinear Phenomena. ,vol. 79, pp. 174- 192 ,(1994) , 10.1016/0167-2789(94)90083-3
U. Parlitz, Estimating model parameters from time series by autosynchronization. Physical Review Letters. ,vol. 76, pp. 1232- 1235 ,(1996) , 10.1103/PHYSREVLETT.76.1232