Robust alternating AdaBoost

作者: Héctor Allende-Cid , Rodrigo Salas , Héctor Allende , Ricardo Ñanculef

DOI: 10.1007/978-3-540-76725-1_45

关键词: Boosting (machine learning)LogitBoostArtificial intelligenceAdaBoostPattern recognitionEmpirical distribution functionEnsemble learningEmpirical probabilityComputer scienceBrownBoostOutlier

摘要: Ensemble methods are general techniques to improve the accuracy of any given learning algorithm. Boosting is a algorithm that builds classifier ensembles incrementally. In this work we propose an improvement classical and inverse AdaBoost algorithms deal with problem presence outliers in data. We Robust Alternating (RADA) alternates between classic create more stable The RADA bounds influence empirical distribution, it detects diminishes probability "bad" samples, performs accurate classification under contaminated data. We report performance results using synthetic real datasets, latter obtained from benchmark site.

参考文章(13)
Jón Atli Benediktsson, Fabio Roli, Josef Kittler, Multiple Classifier Systems ,(2008)
L. G. Valiant, A theory of the learnable symposium on the theory of computing. ,vol. 27, pp. 1134- 1142 ,(1984) , 10.1145/800057.808710
C. L. Blake, UCI Repository of machine learning databases www.ics.uci.edu/〜mlearn/MLRepository.html. ,(1998)
Ludmila I. Kuncheva, Christopher J. Whitaker, Using Diversity with Three Variants of Boosting: Aggressive, Conservative, and Inverse multiple classifier systems. pp. 81- 90 ,(2002) , 10.1007/3-540-45428-4_8
Jürgen Franke, Michael H. Neumann, Bootstrapping Neural Networks Neural Computation. ,vol. 12, pp. 1929- 1949 ,(2000) , 10.1162/089976600300015204
David G. Stork, Richard O. Duda, Peter E. Hart, Pattern Classification ,(1973)
Leo Breiman, Bagging predictors Machine Learning archive. ,vol. 24, pp. 123- ,(1996) , 10.1023/A:1018054314350
Takafumi Kanamori, Takashi Takenouchi, Shinto Eguchi, Noboru Murata, The most robust loss function for boosting international conference on neural information processing. pp. 496- 501 ,(2004) , 10.1007/978-3-540-30499-9_76