Heterogeneous Multi-Agent Deep Reinforcement Learning for Traffic Lights Control.

作者: Ivana Dusparic , Jeancarlo Arguello Calvo

DOI:

关键词: Reinforcement learningControl (management)Urban traffic controlArtificial intelligenceComputer science

摘要: … We evaluate the usage of IQL with Deep Q-Networks in a multiagent setting by using a … local learning because this study considered that the coordination can be achieved by taking into …

参考文章(6)
Ming Tan, Multi-agent reinforcement learning: independent vs. cooperative agents international conference on machine learning. pp. 487- 494 ,(1997) , 10.1016/B978-1-55860-307-3.50049-6
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, Demis Hassabis, None, Human-level control through deep reinforcement learning Nature. ,vol. 518, pp. 529- 533 ,(2015) , 10.1038/NATURE14236
Tom Schaul, Marc Lanctot, Nando De Freitas, Ziyu Wang, Matteo Hessel, Hado Van Hasselt, Dueling network architectures for deep reinforcement learning international conference on machine learning. pp. 1995- 2003 ,(2016)
Tom Schaul, Ioannis Antonoglou, John Quan, David Silver, Prioritized Experience Replay arXiv: Learning. ,(2015)
Shimon Whiteson, Nando de Freitas, Yannis M. Assael, Jakob N. Foerster, Learning to Communicate with Deep Multi-Agent Reinforcement Learning arXiv: Artificial Intelligence. ,(2016)
Shimon Whiteson, Philip H. S. Torr, Pushmeet Kohli, Nantas Nardelli, Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning arXiv: Artificial Intelligence. ,(2017)