On quantum quaternion spheres

作者: Bipul Saurabh

DOI:

关键词: QuantumSymplectic groupPure mathematicsAlgebraMathematicsQuotient space (linear algebra)SPHERESIrreducible representationQuaternionExact sequence

摘要: We give an explicit description of the $q$-deformation symplectic group $SP_{q}(2n)$ at $C^*$-algebra level and find all irreducible representations this $C^{*}$-algebra. Further we describe quotient space $SP_{q}(2n)/SP_{q}(2n-2)$ in terms generators relations. compute its $K$-theory by obtaining a chain short exact sequence for $C^{*}$-algebras underlying such manifolds.

参考文章(18)
Leonid I. Korogodski, Yan S. Soibelman, Algebras of functions on quantum groups American Mathematical Society. ,(1998)
Bruce Blackadar, K-Theory for Operator Algebras ,(1986)
Konrad Schmüdgen, Anatoli Klimyk, Quantum Groups and Their Representations ,(2011)
Partha Sarathi Chakraborty, Arupkumar Pal, Characterization of spectral triples: A combinatorial approach arXiv: Operator Algebras. ,(2008)
Partha Chakraborty, Shanmugasundaram Sundar, K-groups of the quantum homogeneous space SUq(n)/SUq(n - 2) Pacific Journal of Mathematics. ,vol. 252, pp. 275- 292 ,(2011) , 10.2140/PJM.2011.252.275
G.B. Podkolzin, L.I. Vainerman, Quantum Stiefel manifold and double cosets of quantum unitary group Pacific Journal of Mathematics. ,vol. 188, pp. 179- 199 ,(1999) , 10.2140/PJM.1999.188.179
S. L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups Inventiones Mathematicae. ,vol. 93, pp. 35- 76 ,(1988) , 10.1007/BF01393687
Partha Sarathi Chakraborty, S. Sundar, Quantum double suspension and spectral triples Journal of Functional Analysis. ,vol. 260, pp. 2716- 2741 ,(2011) , 10.1016/J.JFA.2011.01.009
L. L. Vaksman, Ya. S. Soibel'man, Algebra of functions on the quantum group SU(2) Functional Analysis and Its Applications. ,vol. 22, pp. 170- 181 ,(1989) , 10.1007/BF01077623
Walter van Suijlekom, Andrzej Sitarz, Giovanni Landi, Ludwik Dabrowski, Joseph C. Várilly, The Dirac Operator on SU q (2) Communications in Mathematical Physics. ,vol. 259, pp. 729- 759 ,(2005) , 10.1007/S00220-005-1383-9