ATM: Genome stability, neuronal development, and cancer cross paths

作者: Yosef Shiloh , Michael B. Kastan

DOI: 10.1016/S0065-230X(01)83007-4

关键词: Cell biologyDNA repairCellular differentiationAtaxia Telangiectasia Mutated ProteinsGeneMutationGeneticsDNA damageCell Cycle ProteinBiologyGenome instability

摘要: One of the cornerstones web signaling pathways governing cellular life and differentiation is DNA damage response. It spans a complex network pathways, ranging from repair to modulation numerous processes in cell. double-strand breaks (DSBs), which are formed as result genotoxic stress or normal recombinational processes, extremely lethal lesions that rapidly mobilize this intricate defense system. The master controller pilots responses DSBs ATM protein kinase, turns on by phosphorylating key players its various branches. product gene mutated human genetic disorder ataxia-telangiectasia (A-T), characterized neuronal degeneration, immunodeficiency, sterility, genomic instability, cancer predisposition, radiation sensitivity. clinical phenotype A-T attests roles ATM, one hand, link between response developmental other hand. Recent studies effectors, combined with thorough investigation animal models A-T, have led new insights into mode action evidence involved than those related response, particularly ones relating growth differentiation, reinforces multifaceted nature protein, genome stability, cross paths.

参考文章(269)
Paweł Kisielow, Harald Von Boehmer, Development and selection of T cells: facts and puzzles. Advances in Immunology. ,vol. 58, pp. 87- 209 ,(1995) , 10.1016/S0065-2776(08)60620-3
Claudia Schaffner, Stephan Stilgenbauer, Gudrun A. Rappold, Hartmut Döhner, Peter Lichter, Somatic ATM mutations indicate a pathogenic role of ATM in B-cell chronic lymphocytic leukemia. Blood. ,vol. 94, pp. 748- 753 ,(1999) , 10.1182/BLOOD.V94.2.748.414K02_748_753
R. Dhand, I. Hiles, G. Panayotou, S. Roche, M.J. Fry, I. Gout, N.F. Totty, O. Truong, P. Vicendo, K. Yonezawa, PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. The EMBO Journal. ,vol. 13, pp. 522- 533 ,(1994) , 10.1002/J.1460-2075.1994.TB06290.X
Marek Liyanage, Zoë Weaver, Carrolee Barlow, Allen Coleman, Daniel G. Pankratz, Stacie Anderson, Anthony Wynshaw-Boris, Thomas Ried, Abnormal rearrangement within the α/δ T-cell receptor locus in lymphomas from Atm-deficient mice Blood. ,vol. 96, pp. 1940- 1946 ,(2000) , 10.1182/BLOOD.V96.5.1940
Dominique Stoppa-Lyonnet, Jean Soulier, Anthony Laugé, Hélène Dastot, Richard Garand, François Sigaux, Marc-Henri Stern, Inactivation of the ATM gene in T-cell prolymphocytic leukemias. Blood. ,vol. 91, pp. 3920- 3926 ,(1998) , 10.1182/BLOOD.V91.10.3920
Da-Qing Yang, Michael B. Kastan, Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nature Cell Biology. ,vol. 2, pp. 893- 898 ,(2000) , 10.1038/35046542
Natasha Soronika, Igor Filippovitch, Magtouf Gatei, Barbara Weber, Martin F. Lavin, Shaun P. Scott, Kum Kum Khanna, Role for ATM in DNA damage-induced phosphorylation of BRCA1. Cancer Research. ,vol. 60, pp. 3299- 3304 ,(2000)
T. Stankovic, S. P. Jackson, A. M. R. Taylor, P. Weber, S. T. Rottinghaus, N. D. Lakin, Analysis of the ATM protein in wild-type and ataxia telangiectasia cells. Oncogene. ,vol. 13, pp. 2707- 2716 ,(1996)
Roberta Melchionna, Xiao-Bo Chen, Alessandra Blasina, Clare H. McGowan, Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nature Cell Biology. ,vol. 2, pp. 762- 765 ,(2000) , 10.1038/35036406
Christine E. Canman, Philip Leder, Christoph H. Westphal, Xin Huang, Michael B. Kastan, Jolyon H. Hendry, Kathryn P. Hoyes, Loss of atm Radiosensitizes Multiple p53 Null Tissues Cancer Research. ,vol. 58, pp. 5637- 5639 ,(1998)