A characterization method and model for predicting coal conversion behaviour

作者: Peter R. Solomon , David G. Hamblen , Michael A. Serio , Zhen-Zhong Yu , Sylvie Charpenay

DOI: 10.1016/0016-2361(93)90106-C

关键词: Bituminous coalDecompositionChemistryVapor pressurePlastometerLiquefactionCoalThermodynamicsMineralogyTarThermal decomposition

摘要: This paper considers the development of a predictive macromolecular network decomposition model for coal conversion which is based on variety modern analytical techniques characterization. Six concepts are foundation functional group-depolymerization-vaporization-cross-linking (FG-DVC) considered: 1. (1) The group sources in yields light gas species thermal decomposition. amount and evolution kinetics can be measured by t.g.-FT-i.r., changes FT-i.r. n.m.r. 2. (2) tar metaplast. t.g.-FT-i.r. molecular weight f.i.m.s. metaplast formation destruction determined solvent extraction, Gieseler plastometer measurements proton magnetic resonance analysis (p.m.r.t.a.). 3. (3) distribution depends coordination number (average attachments aromatic ring clusters). swelling n.m.r. 4. (4) controlled bridge breaking. bridges broken limited available donatable hydrogen. 5. (5) solidification cross-linking. changing cross-link density n.m.r. Cross-linking appears to occur with both CO2 (before breaking) CH4 (after breaking). Thus low-rank coals (which evolve much CO2) before breaking thus thermosetting. High-volatile bituminous form little undergo significant cross-linking become highly fluid. Weathering, increases yield, causes increased lowers fluidity. 6. (6) mass transport molecules evaporate into or carried out at rates proportional their vapour pressure volume species. High pressures reduce hence yield heavy low pressures. These studied describes how kinetic composition parameters obtained swelling, extraction data. compared experimental data heating rate, temperature all varied. There good agreement theory most from authors' laboratory literature.

参考文章(52)
Peter R. Solomon, Robert M. Carangelo, FT-i.r. analysis of coal: 2. Aliphatic and aromatic hydrogen concentration Fuel. ,vol. 67, pp. 949- 959 ,(1988) , 10.1016/0016-2361(88)90095-6
William H. Calkins, Edward Hagaman, Henry Zeldes, Coal flash pyrolysis: 1. An indication of the olefin precursors in coal by CP/MAS 13C n.m.r. spectroscopy Fuel. ,vol. 63, pp. 1113- 1118 ,(1984) , 10.1016/0016-2361(84)90197-2
Kevin R. Squir, Pter R. Solomon, Robert M. Carangelo, Marie B. DiTaranto, Tar evolution from coal and model polymers: 2. The effects of aromatic ring sizes and donatable hydrogens Fuel. ,vol. 65, pp. 833- 843 ,(1986) , 10.1016/0016-2361(86)90078-5
Peter R. Solomon, Michael A. Serio, Girish V. Despande, Erik Kroo, Cross-linking reactions during coal conversion Energy & Fuels. ,vol. 4, pp. 42- 54 ,(1990) , 10.1021/EF00019A009
Stephen Niksa, Alan R. Kerstein, On the role of macromolecular configuration in rapid coal devolatilization Fuel. ,vol. 66, pp. 1389- 1399 ,(1987) , 10.1016/0016-2361(87)90186-4
William H. Calkins, Boghos K. Hovsepian, G.R. Dyrkacz, C.A.A. Bloomquist, L. Ruscic, Coal flash pyrolysis: 4. Polymethylene moieties in coal macerals Fuel. ,vol. 63, pp. 1226- 1229 ,(1984) , 10.1016/0016-2361(84)90429-0
J. D. Freihaut, W. M. Proscia, D. J. Seery, Chemical characteristics of tars produced in a novel low severity, entrained flow reactor Energy & Fuels. ,vol. 3, pp. 692- 703 ,(1989) , 10.1021/EF00018A006