A Bayesian/maximum-entropy view to the spatial estimation problem.

作者: George Christakos

DOI: 10.1007/BF00890661

关键词: GeostatisticsEntropy (information theory)MaximizationPosterior probabilityMathematical optimizationSpatial variabilityBayesian probabilityMathematicsBayes' theoremEconometricsBinary entropy function

摘要: … In view of the above considerations, we can formulate the FTA version of the estimation problem as … The FTA solution to this estimation problem is as follows. First, the requirement (I) is …

参考文章(18)
Georges Matheron, Isofactorial Models and Change of Support NATO ASI Series Series C. pp. 449- 467 ,(1984) , 10.1007/978-94-009-3699-7_26
Lev Semenovich Gandin, Objective Analysis of Meteorological Fields ,(1963)
CE Shennon, Warren Weaver, A mathematical theory of communication Bell System Technical Journal. ,vol. 27, pp. 379- 423 ,(1948) , 10.1002/J.1538-7305.1948.TB01338.X
E.T. Jaynes, On the rationale of maximum-entropy methods Proceedings of the IEEE. ,vol. 70, pp. 939- 952 ,(1982) , 10.1109/PROC.1982.12425
G. Christakos, Optimal Estimation of Nonlinear State Nonlinear Observation Systems Journal of Optimization Theory and Applications. ,vol. 62, pp. 29- 48 ,(1989) , 10.1007/BF00939628
J. Shore, R. Johnson, Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy IEEE Transactions on Information Theory. ,vol. 26, pp. 26- 37 ,(1980) , 10.1109/TIT.1980.1056144