Fractional integral and its physical interpretation

作者: R. R. Nigmatullin

DOI: 10.1007/BF01036529

关键词: Measure (mathematics)Relaxation (iterative method)Domain (mathematical analysis)Cantor setFractional calculusCantor functionMathematicsMathematical analysisPhysical systemExponent

摘要: … In connection with the introduction of the ideas of fractal geometry [1] into modem theoretical physics, many active attempts are being made to explain dependences of the type …

参考文章(12)
L. Pietronero, FRACTALS IN PHYSICS frph. pp. 175- 183 ,(1990) , 10.1007/978-1-4684-8869-2_7
R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry Physica Status Solidi B-basic Solid State Physics. ,vol. 133, pp. 425- 430 ,(1986) , 10.1002/PSSB.2221330150
D. N. Zubarev, Shigeji Fujita, Nonequilibrium Statistical Thermodynamics Physics Today. ,vol. 28, pp. 72- 73 ,(1975) , 10.1063/1.3069143
Theodore Kaplan, L. J. Gray, S. H. Liu, Self-affine fractal model for a metal-electrolyte interface Physical Review B. ,vol. 35, pp. 5379- 5381 ,(1987) , 10.1103/PHYSREVB.35.5379
Andrew K Jonscher, Dielectric relaxation in solids ,(1983)
Benoit B. Mandelbrot, The Fractal Geometry of Nature ,(1982)
R. R. Nigmatullin, To the Theoretical Explanation of the ``Universal Response'' Physica Status Solidi B-basic Solid State Physics. ,vol. 123, pp. 739- 745 ,(1984) , 10.1002/PSSB.2221230241