E2SAM: Evolutionary ensemble of sentiment analysis methods for domain adaptation

作者: Miguel López , Ana Valdivia , Eugenio Martínez-Cámara , M Victoria Luzón , Francisco Herrera

DOI: 10.1016/J.INS.2018.12.038

关键词: Domain (software engineering)Ready to useMachine learningSet (psychology)Artificial intelligenceSentiment analysisClassifier (UML)Domain adaptationComputer science

摘要: Abstract Currently, a plethora of industrial and academic sentiment analysis methods for classifying the opinion polarity text are available ready to use. However, each those have their strengths weaknesses, due mainly approach followed in design (supervised/unsupervised) or domain used development. The weaknesses usually related capacity generalisation machine learning algorithms, lexical coverage linguistic resources. Those issues two main causes one challenges Sentiment Analysis, namely adaptation problem. We argue that right ensemble set heterogeneous Analysis Methods will lessen Thus, we propose new methodology optimising contribution off-the-shelf an classifier depending on input text. results clearly show our claim holds.

参考文章(48)
Ferrante Neri, Carlos Cotta, Pablo Moscato, Handbook of Memetic Algorithms Handbook of Memetic Algorithms. pp. 396- 396 ,(2011) , 10.1007/978-3-642-23247-3
Hinrich Schütze, Christopher D. Manning, Prabhakar Raghavan, Introduction to Information Retrieval ,(2005)
Larry J. Eshelman, J. David Schaffer, Real-Coded Genetic Algorithms and Interval-Schemata foundations of genetic algorithms. ,vol. 2, pp. 187- 202 ,(1993) , 10.1016/B978-0-08-094832-4.50018-0
Rainer Storn, Kenneth Price, Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces Journal of Global Optimization. ,vol. 11, pp. 341- 359 ,(1997) , 10.1023/A:1008202821328
Lior Rokach, Ensemble Methods for Classifiers Data Mining and Knowledge Discovery Handbook. pp. 957- 980 ,(2005) , 10.1007/0-387-25465-X_45
Omar Abu Arqub, Zaer Abo-Hammour, Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm Information Sciences. ,vol. 279, pp. 396- 415 ,(2014) , 10.1016/J.INS.2014.03.128
Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Sentiment strength detection for the social web Journal of the Association for Information Science and Technology. ,vol. 63, pp. 163- 173 ,(2012) , 10.1002/ASI.21662
Nadia FF Da Silva, Eduardo R Hruschka, Estevam R Hruschka Jr, None, Tweet sentiment analysis with classifier ensembles Decision Support Systems. ,vol. 66, pp. 170- 179 ,(2014) , 10.1016/J.DSS.2014.07.003
Ahmed Abbasi, Hsinchun Chen, Arab Salem, Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums ACM Transactions on Information Systems. ,vol. 26, pp. 12- ,(2008) , 10.1145/1361684.1361685
Elisabetta Fersini, Enza Messina, Federico Alberto Pozzi, Sentiment analysis: Bayesian Ensemble Learning Decision Support Systems. ,vol. 68, pp. 26- 38 ,(2014) , 10.1016/J.DSS.2014.10.004