Variational Bayesian mixed-effects inference for classification studies

作者: Kay H. Brodersen , Jean Daunizeau , Christoph Mathys , Justin R. Chumbley , Joachim M. Buhmann

DOI: 10.1016/J.NEUROIMAGE.2013.03.008

关键词: Bayes' theoremPattern recognitionMachine learningArtificial intelligenceFiducial inferenceMathematicsFrequentist inferencePredictive inferenceGibbs samplingInferenceStatistical inferenceBayesian inference

摘要: Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as neuroscience, brain-computer interfaces, clinical diagnostics necessitates inference on performance at more than one level, i.e., both individual subjects and population which these were sampled. Such requires models that explicitly account fixed-effects (within-subjects) random-effects (between-subjects) variance components. While this sort standard mass-univariate analyses fMRI data, they have not yet received much attention multivariate studies presumably because high computational costs entail. This paper extends recently developed hierarchical model mixed-effects introduces an efficient variational Bayes approach to inference. Using synthetic empirical we show is equally simple use as, than, conventional t-test subject-specific sample accuracies, computationally previous sampling permutation tests. Our independent type underlying thus widely applicable. The present framework may help establish future group analyses.

参考文章(71)
Steven Lemm, Benjamin Blankertz, Thorsten Dickhaus, Klaus-Robert Müller, Introduction to machine learning for brain imaging. NeuroImage. ,vol. 56, pp. 387- 399 ,(2011) , 10.1016/J.NEUROIMAGE.2010.11.004
Demis Hassabis, Carlton Chu, Geraint Rees, Nikolaus Weiskopf, Peter D Molyneux, Eleanor A Maguire, None, Decoding neuronal ensembles in the human hippocampus. Current Biology. ,vol. 19, pp. 546- 554 ,(2009) , 10.1016/J.CUB.2009.02.033
A. Schurger, F. Pereira, A. Treisman, J. D. Cohen, Reproducibility Distinguishes Conscious from Nonconscious Neural Representations Science. ,vol. 327, pp. 97- 99 ,(2010) , 10.1126/SCIENCE.1180029
Mats G. Gustafsson, Mikael Wallman, Ulrika Wickenberg Bolin, Hanna Göransson, M. Fryknäs, Claes R. Andersson, Anders Isaksson, Improving Bayesian credibility intervals for classifier error rates using maximum entropy empirical priors Artificial Intelligence in Medicine. ,vol. 49, pp. 93- 104 ,(2010) , 10.1016/J.ARTMED.2010.02.004
Zoubin Ghahramani, Matthew Beal, None, Propagation Algorithms for Variational Bayesian Learning neural information processing systems. ,vol. 13, pp. 507- 513 ,(2000)
Dell Zhang, Wee Sun Lee, Learning classifiers without negative examples: A reduction approach international conference on digital information management. pp. 638- 643 ,(2008) , 10.1109/ICDIM.2008.4746761
R. Sitaram, N. Weiskopf, A. Caria, R. Veit, M. Erb, N. Birbaumer, fMRI Brain-Computer Interfaces IEEE Signal Processing Magazine. ,vol. 25, pp. 95- 106 ,(2008) , 10.1109/MSP.2008.4408446
Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, Joachim M. Buhmann, The Balanced Accuracy and Its Posterior Distribution international conference on pattern recognition. pp. 3121- 3124 ,(2010) , 10.1109/ICPR.2010.764