EXACT SOLUTION OF THE MASTER EQUATION FOR THE ASYMMETRIC EXCLUSION PROCESS

作者: Gunter M. Schütz

DOI: 10.1007/BF02508478

关键词: Lattice (order)Bethe ansatzExact solutions in general relativityQuantum mechanicsMathematicsMaster equationMathematical physics

摘要: Using the Bethe ansatz, we obtain exact solution of master equation for totally asymmetric exclusion process on an infinite one-dimensional lattice. We derive explicit expressions conditional probabilitiesP(x1,...,xN;t/y 1,...,yN; 0) findingN particles lattices sitesx 1,...,xN at timet with initial occupationy 1,...,yN timet=0.

参考文章(36)
Thomas M. Liggett, Interacting Particle Systems ,(1985)
B. Schmittmann, R.K.P. Zia, Statistical mechanics of driven diffusive systems ,(1995)
Claude Godrèche, Solids far from equilibrium ,(1992)
Dietrich E. Wolf, Lei-Han Tang, Inhomogeneous growth processes. Physical Review Letters. ,vol. 65, pp. 1591- 1594 ,(1990) , 10.1103/PHYSREVLETT.65.1591
H. Rost, Non-equilibrium behaviour of a many particle process: Density profile and local equilibria Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete. ,vol. 58, pp. 41- 53 ,(1981) , 10.1007/BF00536194
Haye Hinrichsen, Matrix product ground states for exclusion processes with parallel dynamics Journal of Physics A. ,vol. 29, pp. 3659- 3667 ,(1996) , 10.1088/0305-4470/29/13/030
Fabian H L Essler, Vladimir Rittenberg, Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries Journal of Physics A. ,vol. 29, pp. 3375- 3407 ,(1996) , 10.1088/0305-4470/29/13/013
Steven A. Janowsky, Joel L. Lebowitz, Finite-size effects and shock fluctuations in the asymmetric simple-exclusion process Physical Review A. ,vol. 45, pp. 618- 625 ,(1992) , 10.1103/PHYSREVA.45.618
B. Derrida, E. Domany, D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries Journal of Statistical Physics. ,vol. 69, pp. 667- 687 ,(1992) , 10.1007/BF01050430