Quantum mechanics with difference operators

作者: R Twarock , V.K Dobrev , H.-D Doebner

DOI: 10.1016/S0034-4877(02)80069-6

关键词: Constant coefficientsOperator algebraSpectral theoremFourier integral operatorMathematicsOperator theoryWitt algebraCreation and annihilation operatorsQuantum mechanicsMultiplicative function

摘要: A formulation of quantum mechanics with additive and multiplicative (q-) difference operators instead differential is studied from first principles. Borel-quantisation on smooth configuration spaces used as guiding quantisation method. After a short discussion this method translated step-by-step to framework based operators. To restrict the resulting plethora possible quantisations additional assumptions motivated by simplicity plausibility are required. Multiplicative corresponding q-Borel kinematics given circle its N-point discretisation; connection q-deformations Witt algebra discussed. For “natural” choice q-kinematics q-difference evolution equation obtained. This study shows general difficulties for generalisation physical theory known one “new” framework.

参考文章(15)
B. Angermann, H. D. Doebner, J. Tolar, Quantum kinematics on smooth manifolds Non-linear Partial Differential Operators and Quantization Procedures. pp. 171- 208 ,(1983) , 10.1007/BFB0073173
H.-D. Doebner, J. D. Hennig, A Quantum Mechanical Evolution Equation for Mixed States from Symmetry and Kinematics Symmetries in Science VIII. pp. 85- 90 ,(1995) , 10.1007/978-1-4615-1915-7_8
G. A. Goldin, D. H. Sharp, Lie algebras of local currents and their representations Group Representations in Mathematics and Physics. ,vol. 6, pp. 300- 311 ,(1970) , 10.1007/3-540-05310-7_31
Carl Eckart, Werner Heisenberg, F.C. Hoyt, The Physical Principles of Quantum Theory Dover Publications. ,(1930)
T. D. Palev, N. I. Stoilova, Many-body Wigner quantum systems Journal of Mathematical Physics. ,vol. 38, pp. 2506- 2523 ,(1997) , 10.1063/1.531991
M. Chaichian, A.P. Isaev, J. Lukierski, Z. Popowicz, P. Preŝnajder, q-deformations of Virasoro algebra and conformal dimensions Physics Letters B. ,vol. 262, pp. 32- 38 ,(1991) , 10.1016/0370-2693(91)90638-7
N. Aizawa, H. Sato, q deformation of the Virasoro algebra with central extension Physics Letters B. ,vol. 256, pp. 185- 190 ,(1991) , 10.1016/0370-2693(91)90671-C
N. AIZAWA, V. K. DOBREV, H.-D. DOEBNER, Intertwining Operators for SCHRÖDINGER Algebras and Hierarchy of Invariant Equations Proceedings of the Second International Symposium. pp. 222- 227 ,(2002) , 10.1142/9789812777850_0021
R. F. Dashen, D. H. Sharp, CURRENTS AS COORDINATES FOR HADRONS. Physical Review. ,vol. 165, pp. 1857- 1866 ,(1968) , 10.1103/PHYSREV.165.1857
B.L. Cerchiai, J. Wess, \(q\)-deformed Minkowski space based on a \(q\)-Lorentz algebra European Physical Journal C. ,vol. 5, pp. 553- 566 ,(1998) , 10.1007/S100529800868