Lattice Properties of Oriented Exchange Graphs and Torsion Classes

作者: Alexander Garver , Thomas McConville

DOI: 10.1007/S10468-017-9757-1

关键词: CombinatoricsVoltage graphComplement graphSymmetric graphCubic graphLine graphMathematicsNull graphCoxeter graphGraph algebra

摘要: The exchange graph of a 2-acyclic quiver is the mutation-equivalent quivers whose edges correspond to mutations. When admits nondegenerate Jacobi-finite potential, natural acyclic orientation called oriented graph, as shown by Brustle and Yang. isomorphic Hasse diagram poset functorially finite torsion classes certain dimensional algebra. We prove that lattices are semidistributive lattices, we use this result conclude graphs with finitely many elements lattices. Furthermore, if type A Dynkin or an cycle, then lattice quotient biclosed subcategories modules over cluster-tilted algebra, generalizing Reading's Cambrian in A. also apply our results address conjecture Brustle, Dupont, Perotin on lengths maximal green sequences.

参考文章(27)
Thomas Brüstle, Dong Yang, Ordered Exchange Graphs arXiv: Representation Theory. ,(2013)
Aslak Bakke Buan, Robert J. Marsh, Idun Reiten, Cluster-tilted algebras Transactions of the American Mathematical Society. ,vol. 359, pp. 323- 332 ,(2006) , 10.1090/S0002-9947-06-03879-7
Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, Gordana Todorov, Tilting theory and cluster combinatorics Advances in Mathematics. ,vol. 204, pp. 572- 618 ,(2006) , 10.1016/J.AIM.2005.06.003
M.C.R. Butler, Claus Michael Ringel, Auslander-reiten sequences with few middle terms and applications to string algebrass Communications in Algebra. ,vol. 15, pp. 145- 179 ,(1987) , 10.1080/00927878708823416
Harm Derksen, Jerzy Weyman, Andrei Zelevinsky, Quivers with potentials and their representations I: Mutations Selecta Mathematica-new Series. ,vol. 14, pp. 59- 119 ,(2008) , 10.1007/S00029-008-0057-9
Harm Derksen, Jerzy Weyman, Andrei Zelevinsky, Quivers with potentials and their representations II: Applications to cluster algebras Journal of the American Mathematical Society. ,vol. 23, pp. 749- 790 ,(2010) , 10.1090/S0894-0347-10-00662-4
Alan Day, Doubling constructions in lattice theory Canadian Journal of Mathematics. ,vol. 44, pp. 252- 269 ,(1992) , 10.4153/CJM-1992-017-7
Burkhard Wald, Josef Waschbu¨sch, Tame biserial algebras Journal of Algebra. ,vol. 95, pp. 480- 500 ,(1985) , 10.1016/0021-8693(85)90119-X