Enumerative Geometry of Calabi-Yau 5-Folds

作者: R. Pandharipande , A. Zinger

DOI:

关键词: HypersurfaceEnumerative geometryGenus (mathematics)Calabi–Yau manifoldPure mathematicsMathematicsElliptic curveNormal bundleEnumerationInteger

摘要: … Calabi–Yau $\mathbb{P}^2$ with normal bundle $\oplus_{i=1}^{3} \mathcal{O} (-1)$ and the compact Calabi–Yau … form for our integer invariants has been conjectured by G. Martin. In …

参考文章(10)
Geir Ellingsrud, Stein Arild Strømme, Bott’s formula and enumerative geometry Journal of the American Mathematical Society. ,vol. 9, pp. 175- 193 ,(1996) , 10.1090/S0894-0347-96-00189-0
Cumrun Vafa, Rajesh Gopakumar, M theory and topological strings. 2. arXiv: High Energy Physics - Theory. ,(1998)
Jun Li, Aleksey Zinger, Gromov–Witten invariants of a quintic threefold and a rigidity conjecture Pacific Journal of Mathematics. ,vol. 233, pp. 417- 480 ,(2007) , 10.2140/PJM.2007.233.417
Aleksey Zinger, Enumerative vs.\ symplectic invariants and obstruction bundles Journal of Symplectic Geometry. ,vol. 2, pp. 445- 543 ,(2004) , 10.4310/JSG.2004.V2.N4.A1
R. Pandharipande, Hodge Integrals and Degenerate Contributions Communications in Mathematical Physics. ,vol. 208, pp. 489- 506 ,(1999) , 10.1007/S002200050766
T. Graber, R. Pandharipande, Localization of virtual classes Inventiones Mathematicae. ,vol. 135, pp. 487- 518 ,(1999) , 10.1007/S002220050293
Kenji Fukaya, Kaoru Ono, ARNOLD CONJECTURE AND GROMOV–WITTEN INVARIANT Topology. ,vol. 38, pp. 933- 1048 ,(1999) , 10.1016/S0040-9383(98)00042-1
M.F. Atiyah, R. Bott, The moment map and equivariant cohomology Topology. ,vol. 23, pp. 1- 28 ,(1984) , 10.1016/0040-9383(84)90021-1
Sheldon Katz, On the finiteness of rational curves on quintic threefolds Compositio Mathematica. ,vol. 60, pp. 151- 162 ,(1986)