作者: N. Andrienko , G. Andrienko , A. Savinov , H. Voss , D. Wettschereck
DOI: 10.1559/152304001782153035
关键词: Data analysis 、 Computer science 、 Spatial analysis 、 Weighting 、 Exploratory data analysis 、 Data mining 、 Context (language use) 、 Information retrieval 、 Decision tree learning 、 Visualization 、 Toolbox
摘要: We present new methods for analyzing geo-referenced statistical data. These combine visualization and direct manipulation techniques of exploratory data analysis algorithms mining. The have been implemented by integrating two hitherto separate software tools: Descartes interactive thematic mapping, the mining toolbox Kepler. In using these tools, may proceed as a steady interaction between visual inspiration insights gained from mathematical–statistical calculations. After introducing various components paper guides reader through in-depth examples tools in context urban demographic particular, it is shown how geography-based classifications districts can be related to available characteristics applying classification tree derivation, attribute weighting, subgroup discovery.