A negative selection algorithm for classification and reduction of the noise effect

作者: K. Igawa , H. Ohashi

DOI: 10.1016/J.ASOC.2008.05.003

关键词: OverfittingArtificial intelligenceAnomaly detectionPattern recognitionClassifier (UML)Negative selectionComputer scienceImmune systemArtificial immune systemNegative selection algorithmMachine learning

摘要: Artificial Immune Systems (AIS) are a type of intelligent algorithm inspired by the principles and processes human immune system. In last decade, applications AIS have been studied in various fields. application change/anomaly detection, negative selection algorithms successfully applied. However, not appropriate for multi-class classification problems, because they do mechanism to minimize danger overfitting oversearching. this paper, we propose new overcome drawback extend area classification. The is named Negative Selection Classifier (ANSC). We investigate tolerance ANSC against noise, introduce method reduce effect noise into ANSC. accuracy data reduction compared with those from Recognition System (AIRS), which well known effective classifier AIS. results show that our useful problems effect.

参考文章(30)
Leandro Nunes de Castro, Fernando J. Von Zuben, aiNet: An Artificial Immune Network for Data Analysis IGI Global. pp. 231- 260 ,(2002) , 10.4018/978-1-930708-25-9.CH012
Thomas Stibor, Jonathan Timmis, Claudia Eckert, A comparative study of real-valued negative selection to statistical anomaly detection techniques international conference on artificial immune systems. pp. 262- 275 ,(2005) , 10.1007/11536444_20
Zhou Ji, Dipankar Dasgupta, Real-Valued Negative Selection Algorithm with Variable-Sized Detectors genetic and evolutionary computation conference. pp. 287- 298 ,(2004) , 10.1007/978-3-540-24854-5_30
Data Mining: A Heuristic Approach Idea Group Pub. : Information Science Pub.. ,(2002) , 10.4018/978-1-93070-825-9
Thomas Stibor, Kpatscha M. Bayarou, Claudia Eckert, An Investigation of R-Chunk Detector Generation on Higher Alphabets genetic and evolutionary computation conference. pp. 299- 307 ,(2004) , 10.1007/978-3-540-24854-5_31
Julie Greensmith, Steve Cayzer, An Artificial Immune System Approach to Semantic Document Classification international conference on artificial immune systems. pp. 136- 146 ,(2003) , 10.1007/978-3-540-45192-1_14
Leandro R. de Castro, Jonathan Timmis, Artificial Immune Systems: A New Computational Intelligence Paradigm Springer-Verlag New York, Inc.. ,(2002)
Fabio A. González, Dipankar Dasgupta, Anomaly Detection Using Real-Valued Negative Selection Genetic Programming and Evolvable Machines. ,vol. 4, pp. 383- 403 ,(2003) , 10.1023/A:1026195112518
Jon Timmis, Artificial immune systems---today and tomorrow Natural Computing. ,vol. 6, pp. 1- 18 ,(2007) , 10.1007/S11047-006-9029-1