Chitosan: An elicitor and antimicrobial Bio-resource in plant protection

作者: Akansha Singh , Kalpana Gairola, , Vinod Upadhyay , J. Kumar

DOI: 10.18805/AG.R-1723

关键词: Systemic acquired resistanceFood scienceChitinMode of actionElicitorAntimicrobialPesticideChitosanDisease management (agriculture)Chemistry

摘要: Pesticide resistance and environment threat due to injudicious use of chemical pesticides for disease management employs the alteration in practices. Chitosan, a deacetylated chitin derivative, behaves like general elicitor, inducing non-host resistance, prime plants systemic acquired addition this Chitosan has high antimicrobial activity against wide range pathogenic spoilage microorganisms, including fungi bacteria. The chitosan agriculture food systems should be based on sufficient knowledge complex mechanisms its elicitor mode action. In article we number studies investigation properties application them sector have been summarized.

参考文章(36)
M. IRITI, S. VITALINI, G. DI TOMMASO, S. D'AMICO, M. BORGO, F. FAORO, New chitosan formulation prevents grapevine powdery mildew infection and improves polyphenol content and free radical scavenging activity of grape and wine Australian Journal of Grape and Wine Research. ,vol. 17, pp. 263- 269 ,(2011) , 10.1111/J.1755-0238.2011.00149.X
Ling Yien Ing, Noraziah Mohamad Zin, Atif Sarwar, Haliza Katas, Antifungal activity of chitosan nanoparticles and correlation with their physical properties. International Journal of Biomaterials. ,vol. 2012, pp. 632698- 632698 ,(2012) , 10.1155/2012/632698
Guanghua He, Xu Chen, Yihua Yin, Hua Zheng, Xiong Xiong, Yumin Du, Synthesis, characterization and antibacterial activity of salicyloyl chitosan Carbohydrate Polymers. ,vol. 83, pp. 1274- 1278 ,(2011) , 10.1016/J.CARBPOL.2010.09.034
J. García-Rincón, J. Vega-Pérez, M.G. Guerra-Sánchez, A.N. Hernández-Lauzardo, A. Peña-Díaz, M.G. Velázquez-Del Valle, Effect of chitosan on growth and plasma membrane properties of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill Pesticide Biochemistry and Physiology. ,vol. 97, pp. 275- 278 ,(2010) , 10.1016/J.PESTBP.2010.03.008
Jae-Young Je, Se-Kwon Kim, Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. Journal of Agricultural and Food Chemistry. ,vol. 54, pp. 6629- 6633 ,(2006) , 10.1021/JF061310P
Issam Sebti, Adele Martial-Gros, Adele Carnet-Pantiez, Stephane Grelier, Veronique Coma, Chitosan Polymer as Bioactive Coating and Film against Aspergillus niger Contamination Journal of Food Science. ,vol. 70, pp. 16- ,(2005) , 10.1111/J.1365-2621.2005.TB07098.X
Ögmundur Vidar Rúnarsson, Jukka Holappa, Tapio Nevalainen, Martha Hjálmarsdóttir, Tomi Järvinen, Thorsteinn Loftsson, Jón M. Einarsson, Sigrídur Jónsdóttir, Margrét Valdimarsdóttir, Már Másson, Antibacterial activity of methylated chitosan and chitooligomer derivatives: Synthesis and structure activity relationships European Polymer Journal. ,vol. 43, pp. 2660- 2671 ,(2007) , 10.1016/J.EURPOLYMJ.2007.03.046
Hong Tang, Peng Zhang, Thomas L. Kieft, Shannon J. Ryan, Shenda M. Baker, William P. Wiesmann, Snezna Rogelj, Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria. Acta Biomaterialia. ,vol. 6, pp. 2562- 2571 ,(2010) , 10.1016/J.ACTBIO.2010.01.002
Keisuke Kurita, Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans Marine Biotechnology. ,vol. 8, pp. 203- 226 ,(2006) , 10.1007/S10126-005-0097-5
Napanporn Vallapa, Oraphan Wiarachai, Nuttha Thongchul, Jisheng Pan, Varawut Tangpasuthadol, Suda Kiatkamjornwong, Voravee P. Hoven, Enhancing antibacterial activity of chitosan surface by heterogeneous quaternization Carbohydrate Polymers. ,vol. 83, pp. 868- 875 ,(2011) , 10.1016/J.CARBPOL.2010.08.075