Convergence of distorted Brownian motions and singular Hamiltonians

作者: Andrea Posilicano

DOI: 10.1007/BF00282363

关键词: Potential theoryNorm (mathematics)Probability measureDiscrete mathematicsMathematicsPure mathematicsNabla symbolDirichlet distributionLebesgue measureResolventMeasurable function

摘要: We prove a convergence theorem for sequences of Diffusion Processes corresponding to Dirichlet Forms the kind \(\varepsilon _\phi \left( {f,g} \right) = \tfrac{1}{2}\int_{\mathbb{R}^d } {\nabla f} x \cdot \nabla g\left( \right)\phi ^2 \right)dx\).We obtain in total variation norm probability measures on path space C(ℝ+;ℝd) under hypotheses which, example, are satisfied case Hloc1(ℝd)-convergence ϕ's, but we can allow more singular situations as regards approximating sequences. use then these results give criterion generalized Schrodinger operators which potential function should not necessarily exists measurable function. only strong resolvent sense, also uniform operator topology up sets arbitrarily small Lebesgue measure. Applications problem approximation ordinary by ones zero-range interactions given.

参考文章(26)
Barry Simon, Michael Reed, Analysis of Operators ,(1978)
Daniel W. Stroock, Srinivasa R. S. Varadhan, Multidimensional Diffusion Processes ,(1979)
Sergio Albeverio, Philippe Blanchard, ZhiMing Ma, Feynman-Kac semigroups in terms of signed smooth measures International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique. pp. 1- 31 ,(1991) , 10.1007/978-3-0348-6413-8_1
Claude Dellacherie, Paul André Meyer, Probabilités et potentiel Hermann. ,(1966)
Masayoshi Takeda, On a martingale method for symmetric diffusion processes and its applications Osaka Journal of Mathematics. ,vol. 26, pp. 605- 623 ,(1989) , 10.18910/7484
Sergio Albeverio, Solvable Models in Quantum Mechanics ,(1988)
Masayoshi Takeda, On Donsker-Varadhan’s Entropy and its Application Forum Mathematicum. ,vol. 2, pp. 481- 488 ,(1990) , 10.1515/FORM.1990.2.481
R. Figari, H. Holden, A. Tetab, A law of large numbers and a central limit theorem for the Schrödinger operator with zero-range potentials Journal of Statistical Physics. ,vol. 51, pp. 205- 214 ,(1988) , 10.1007/BF01015327
S. Kullback, A lower bound for discrimination information in terms of variation (Corresp.) IEEE Transactions on Information Theory. ,vol. 13, pp. 126- 127 ,(1967) , 10.1109/TIT.1967.1053968