Longitudinal Modeling of Glaucoma Progression Using 2-Dimensional Continuous-Time Hidden Markov Model

作者: Yu-Ying Liu , Hiroshi Ishikawa , Mei Chen , Gadi Wollstein , Joel S. Schuman

DOI: 10.1007/978-3-642-40763-5_55

关键词: Pattern recognition (psychology)MedicinePattern recognitionMarkov chainEarly glaucomaGlaucoma monitoringGlaucomaDegeneration (medical)Hidden Markov modelArtificial intelligenceFunctional measurementSimulation

摘要: We propose a 2D continuous-time Hidden Markov Model (2D CT-HMM) for glaucoma progression modeling given longitudinal structural and functional measurements. CT-HMM is suitable medical data consisting of visits at arbitrary times, state structure more appropriate since the time courses degeneration are usually different. The learned model not only corroborates clinical findings that evident than in early opposite observed advanced stages, but also reveals exact stages where trend reverses. A method to detect segments fast proposed. Our results show this detector can effectively identify patients with rapid degeneration. derived be value monitoring.

参考文章(13)
Poul Erik Petersen, The burden of oral disease: challenges to improving oral health in the 21st century. Bulletin of The World Health Organization. ,vol. 83, pp. 3- 3 ,(2005) , 10.1590/S0042-96862005000100003
Harry A. Quigley, Susan Vitale, Models of open-angle glaucoma prevalence and incidence in the United States. Investigative Ophthalmology & Visual Science. ,vol. 38, pp. 83- 91 ,(1997)
Ying Wang, Susan M. Resnick, Christos Davatzikos, Spatio-temporal Analysis of Brain MRI Images Using Hidden Markov Models Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. ,vol. 13, pp. 160- 168 ,(2010) , 10.1007/978-3-642-15745-5_20
Sharon Kingman, Glaucoma Is Second Leading Cause of Blindness Globally Bulletin of The World Health Organization. ,vol. 82, pp. 887- 888 ,(2004) , 10.1590/S0042-96862004001100019
Christopher H. Jackson, Multi-State Models for Panel Data: The msm Package for R Journal of Statistical Software. ,vol. 38, pp. 1- 28 ,(2011) , 10.18637/JSS.V038.I08
Jacek Kotowski, Gadi Wollstein, Lindsey S. Folio, Hiroshi Ishikawa, Joel S. Schuman, Clinical Use of OCT in Assessing Glaucoma Progression Ophthalmic Surgery Lasers & Imaging. ,vol. 42, ,(2011) , 10.3928/15428877-20110627-01
Hubert M. Fonteijn, Marc Modat, Matthew J. Clarkson, Josephine Barnes, Manja Lehmann, Nicola Z. Hobbs, Rachael I. Scahill, Sarah J. Tabrizi, Sebastien Ourselin, Nick C. Fox, Daniel C. Alexander, An event-based model for disease progression and its application in familial Alzheimer's disease and Huntington's disease. NeuroImage. ,vol. 60, pp. 1880- 1889 ,(2012) , 10.1016/J.NEUROIMAGE.2012.01.062
J. D. Kalbfleisch, J. F. Lawless, The Analysis of Panel Data under a Markov Assumption Journal of the American Statistical Association. ,vol. 80, pp. 863- 871 ,(1985) , 10.1080/01621459.1985.10478195
L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition Proceedings of the IEEE. ,vol. 77, pp. 267- 296 ,(1989) , 10.1109/5.18626