Queueing process with excluded-volume effect

作者: Chikashi Arita

DOI: 10.1103/PHYSREVE.80.051119

关键词: Stationary stateMathematicsAsymmetric simple exclusion processProbability and statisticsMatrix multiplicationStatistical physicsCritical lineParameter spaceQueueing theoryMonotonic functionStatistics and ProbabilityStatistical and Nonlinear PhysicsCondensed matter physics

摘要: We introduce an extension of the M/M/1 queueing process with a spatial structure and excluded-volume effect. The rule particle hopping is same as for totally asymmetric simple exclusion (TASEP). A stationary-state solution constructed in slightly arranged matrix product form open TASEP. obtain critical line that separates parameter space depending on whether model has stationary state. calculate average length number particles show monotonicity probability also consider generalization backward allowed alternate joined system

参考文章(9)
Gunter M Schütz, Exactly Solvable Models for Many-Body Systems Far from Equilibrium Phase Transitions and Critical Phenomena. ,vol. 19, pp. 1- 251 ,(2001) , 10.1016/S1062-7901(01)80015-X
R A Blythe, M R Evans, Nonequilibrium steady states of matrix-product form: a solver's guide Journal of Physics A. ,vol. 40, ,(2007) , 10.1088/1751-8113/40/46/R01
Anatoly B Kolomeisky, Gunter M Schütz, Eugene B Kolomeisky, Joseph P Straley, Phase diagram of one-dimensional driven lattice gases with open boundaries Journal of Physics A. ,vol. 31, pp. 6911- 6919 ,(1998) , 10.1088/0305-4470/31/33/003
B Derrida, M R Evans, V Hakim, V Pasquier, Exact solution of a 1d asymmetric exclusion model using a matrix formulation Journal of Physics A. ,vol. 26, pp. 1493- 1517 ,(1993) , 10.1088/0305-4470/26/7/011
Tomohiro Sasamoto, Shintaro Mori, Miki Wadati, One-dimensional asymmetric exclusion model with open boundaries Journal of the Physical Society of Japan. ,vol. 65, pp. 2000- 2008 ,(1996) , 10.1143/JPSJ.65.2000
F H L Essler, Richard Blythe, Martin Evans, F Colaiori, Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra Journal of Physics A. ,vol. 33, pp. 2313- 2332 ,(2000) , 10.1088/0305-4470/33/12/301
R A Blythe, M R Evans, F Colaiori, F H L Essler, Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra arXiv: Statistical Mechanics. ,(1999) , 10.1088/0305-4470/33/12/301