DyANE: Dynamics-aware node embedding for temporal networks

作者: Ciro Cattuto , Alain Barrat , Mizuki Oka , Koya Sato

DOI:

关键词: Node (networking)Feature vectorTheoretical computer scienceGraphComputer scienceEmbedding

摘要: Low-dimensional vector representations of network nodes have proven successful to feed graph data machine learning algorithms and improve performance across diverse tasks. Most the embedding techniques, however, been developed with goal achieving dense, low-dimensional encoding structure patterns. Here, we present a node technique aimed at providing feature vectors that are informative dynamical processes occurring over temporal networks-rather than itself-with enabling prediction tasks related evolution outcome these processes. We achieve this by using modified supra-adjacency representation networks building on standard techniques for static graphs based random-walks. show resulting useful paradigmatic processes, namely epidemic spreading empirical networks. In particular, illustrate our approach nodes' states in single instance process. how framing task as supervised multi-label classification allows us estimate entire system from partial sampling random times, potential impact nowcasting infectious disease dynamics.

参考文章(21)
Manolis Kellis, Muriel Medard, Ken Duffy, Soheil Feizi, Gerald Quon, Network Infusion to Infer Information Sources in Networks arXiv: Social and Information Networks. ,(2016)
Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, Alessandro Vespignani, Epidemic processes in complex networks Reviews of Modern Physics. ,vol. 87, pp. 925- 979 ,(2015) , 10.1103/REVMODPHYS.87.925
Qiaozhu Mei, Meng Qu, Mingzhe Wang, Jian Tang, Ming Zhang, Jun Yan, LINE: Large-scale Information Network Embedding the web conference. pp. 1067- 1077 ,(2015) , 10.1145/2736277.2741093
S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C. J. Pérez-Vicente, Y. Moreno, A. Arenas, Diffusion dynamics on multiplex networks. Physical Review Letters. ,vol. 110, pp. 028701- ,(2013) , 10.1103/PHYSREVLETT.110.028701
Claudio Castellano, Santo Fortunato, Vittorio Loreto, Statistical physics of social dynamics Reviews of Modern Physics. ,vol. 81, pp. 591- 646 ,(2009) , 10.1103/REVMODPHYS.81.591
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay, Scikit-learn: Machine Learning in Python Journal of Machine Learning Research. ,vol. 12, pp. 2825- 2830 ,(2011)
Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, Alexander J. Smola, Distributed large-scale natural graph factorization Proceedings of the 22nd international conference on World Wide Web - WWW '13. pp. 37- 48 ,(2013) , 10.1145/2488388.2488393
Rami Al-Rfou, Bryan Perozzi, Steven Skiena, DeepWalk: Online Learning of Social Representations arXiv: Social and Information Networks. ,(2014) , 10.1145/2623330.2623732
Emre Sefer, Carl Kingsford, Diffusion archeology for diffusion progression history reconstruction Knowledge and Information Systems. ,vol. 49, pp. 403- 427 ,(2016) , 10.1007/S10115-015-0904-X
Polina Rozenshtein, Aristides Gionis, B. Aditya Prakash, Jilles Vreeken, Reconstructing an Epidemic Over Time knowledge discovery and data mining. pp. 1835- 1844 ,(2016) , 10.1145/2939672.2939865