作者: Nicola Galesi , Oliver Kullmann
DOI: 10.1007/11527695_8
关键词: Bounded function 、 Graph theory 、 Boolean satisfiability problem 、 Mathematics 、 Hypergraph 、 Discrete mathematics 、 Rank (linear algebra) 、 Time complexity 、 Linear algebra 、 Hermitian matrix 、 Combinatorics
摘要: Combining graph theory and linear algebra, we study SAT problems of low “linear algebra complexity”, considering formulas with bounded hermitian rank. We show polynomial time decision the class rank at most one, applying methods from hypergraph transversal theory. Applications to heuristics for algorithms structure minimally unsatisfiable clause-sets are discussed.