Dependence of the morphology of graphitic electrodes on the electrochemical intercalation of lithium ions

作者: D. Billaud , F.X. Henry , P. Willmann

DOI: 10.1016/0378-7753(94)02107-E

关键词: ElectrochemistryLithiumElectrolyteCyclic voltammetryInorganic chemistryElectrochemical grindingElectrodeIntercalation (chemistry)Ethylene carbonateChemistry

摘要: We have studied the effects of several parameters that influence electrochemical intercalation lithium ions into various carbonaceous materials: massive samples pyrographite PGCCL (Le Carbone Lorraine), bulky pitch-based graphitized carbon fibres P100-S (Amoco) and divided natural graphite powder UF4 Lorraine). The Li+ has been achieved in electrolytic solutions composed a solvent, ethylene carbonate conducting salt, LiClO4. shown previously such an electrolyte allows unsolvated up to richest stage-I LiC6 composition without apparent solvent decomposition. behaviour electrodes electrolytes was followed either by chronopotentiometry (galvanostatic charge/discharge cycles) or cyclic voltammetry. use micro-computers, able conduct experiments imposition charge potential steps cell relaxations, allowed obtain data on kinetics intercalation. graphitic electrode is strongly dependent its morphology. Moreover, decrease size crystalline domains during prolongated cyclings particularly samples. Such grinding obviously positive effect performances characterized noticeable increase maximum x reached (x refers LixC6 composition). It appears also poly(vinylidene difluoride) (PVDF) leads side reactions negative electrodes.

参考文章(16)
J.O. Besenhard, Cycling behaviour and corrosion of Li-Al electrodes in organic electrolytes Journal of Electroanalytical Chemistry. ,vol. 94, pp. 77- 81 ,(1978) , 10.1016/S0022-0728(78)80400-8
Denis Billaud, Edward McRae, Albert Hérold, Synthesis and electrical resistivity of lithium-pyrographite intercalation compounds (stages I, II and III) Materials Research Bulletin. ,vol. 14, pp. 857- 864 ,(1979) , 10.1016/0025-5408(79)90149-1
Denis Billaud, Francois Henry, Patrick Wellmann, Electrochemical intercalation of lithium into carbon materials Molecular Crystals and Liquid Crystals. ,vol. 245, pp. 159- 164 ,(1994) , 10.1080/10587259408051682
R. Kanno, Y. Takeda, T. Ichikawa, K. Nakanishi, O. Yamamoto, Carbon as negative electrodes in lithium secondary cells Journal of Power Sources. ,vol. 26, pp. 535- 543 ,(1989) , 10.1016/0378-7753(89)80175-2
M. Mohri, N. Yanagisawa, Y. Tajima, H. Tanaka, T. Mitate, S. Nakajima, M. Yoshida, Y. Yoshimoto, T. Suzuki, H. Wada, Rechargeable lithium battery based on pyrolytic carbon as a negative electrode Journal of Power Sources. ,vol. 26, pp. 545- 551 ,(1989) , 10.1016/0378-7753(89)80176-4
K. M. Abraham, J. S. Foos, J. L. Goldman, Long Cycle‐Life Secondary Lithium Cells Utilizing Tetrahydrofuran Journal of The Electrochemical Society. ,vol. 131, pp. 2197- 2199 ,(1984) , 10.1149/1.2116049
Denis Billaud, Albert Herold, Nouvelle méthode de préparation de composés graphite-lithium Carbon. ,vol. 17, pp. 183- ,(1979) , 10.1016/0008-6223(79)90029-0
N. Imanishi, H. Kashiwagi, T. Ichikawa, Y. Takeda, O. Yamamoto, M. Inagaki, Charge‐Discharge Characteristics of Mesophase‐Pitch‐Based Carbon Fibers for Lithium Cells Journal of The Electrochemical Society. ,vol. 140, pp. 315- 320 ,(1993) , 10.1149/1.2221044
D. Billaud, F.X. Henry, P. Willmann, Electrochemical synthesis of binary graphite-lithium intercalation compounds Materials Research Bulletin. ,vol. 28, pp. 477- 483 ,(1993) , 10.1016/0025-5408(93)90130-6