Linear Difference Systems on Partially Ordered Sets

作者: Bostwick F. Wyman

DOI: 10.1007/978-3-642-48895-5_6

关键词: Hankel matrixMathematicsPure mathematicsIncidence algebraSubringFunctorSet (abstract data type)Canonical formPartially ordered setRealization (systems)

摘要: A theory of time-varying linear discrete-time difference systems is presented, for which the time set may be any locally finite partially ordered set. subring incidence algebra acts on state-module, and resulting input output functors lead to a realization equations. The canonical realizations can computed explicitly generalize classical weighting patterns.

参考文章(13)
Lennart Ljung, Jorma Rissanen, On Canonical Forms, Parameter Identifiability and the Concept of Complexity Technical Reports; TFRT. ,vol. 7083, pp. 58- 69 ,(1975)
Lennart Ljung, On The Consistency of Prediction Error Identification Methods Mathematics in Science and Engineering. ,vol. 126, pp. 121- 164 ,(1976) , 10.1016/S0076-5392(08)60871-1
J. Rissanen, Minmax Entropy Estimation of Models for Vector Processes Mathematics in Science and Engineering. ,vol. 126, pp. 97- 119 ,(1976) , 10.1016/S0076-5392(08)60870-X
C-W. CHAN, C. J. HARRIS, P. E. WELLSTEAD, An order-testing criterion for mixed autoregressive moving average processes International Journal of Control. ,vol. 20, pp. 817- 834 ,(1974) , 10.1080/00207177408932784
Hirotugu Akaike, Markovian Representation of Stochastic Processes by Canonical Variables Siam Journal on Control. ,vol. 13, pp. 162- 173 ,(1975) , 10.1137/0313010
CE Shennon, Warren Weaver, A mathematical theory of communication Bell System Technical Journal. ,vol. 27, pp. 379- 423 ,(1948) , 10.1002/J.1538-7305.1948.TB01338.X
D. Mayne, A canonical model for identification of multivariable linear systems IEEE Transactions on Automatic Control. ,vol. 17, pp. 728- 729 ,(1972) , 10.1109/TAC.1972.1100108
E. T. Jaynes, Information Theory and Statistical Mechanics Physical Review. ,vol. 106, pp. 620- 630 ,(1957) , 10.1103/PHYSREV.106.620
E. Tse, H. Weinert, Structure determination and parameter identification for multivariable stochastic linear systems IEEE Transactions on Automatic Control. ,vol. 20, pp. 603- 613 ,(1975) , 10.1109/TAC.1975.1101081