Learning and imprinting in stationary and non-stationary environment

作者: E. Pfaffelhuber , P. S. Damle

DOI: 10.1007/BF00274888

关键词: Imprinting (organizational theory)AdaptabilityRange (mathematics)Control theoryArtificial intelligenceComplex systemEnergy consumptionFunction (mathematics)Symmetry (physics)Computer scienceExponential growth

摘要: The performance of the extended Bush-Mosteller learning and imprinting scheme developed previously is studied for stationary non-stationary stochastic environments. As a criterion average missing information level chosen. For environment approximate time course latter derived discussed, an exact symmetry in schemes proved, biological advantage processes, with respect to energy consumption, pointed out. proper shown be superior as adaptability novel environmental properties decreases exponentially time. optimal memory range system calculated function span during which changes significantly mean amplitude these occur.

参考文章(15)
Marek Fisz, Wahrscheinlichkeitsrechnung und mathematische Statistik VEB Deutscher Verlag der Wissenschafte. ,(1966)
Robert R. Bush, Frederick Mosteller, A Stochastic Model with Applications to Learning Annals of Mathematical Statistics. ,vol. 24, pp. 559- 585 ,(1953) , 10.1214/AOMS/1177728914
E. Pfaffelhuber, Mathematical learning models and neuronal networks. Journal of Theoretical Biology. ,vol. 40, pp. 63- 76 ,(1973) , 10.1016/0022-5193(73)90165-3
Gustav Feichtinger, „Wahrscheinlichkeitslernen“ in der statistischen Lerntheorie Metrika. ,vol. 18, pp. 35- 55 ,(1972) , 10.1007/BF02614235
E. Pfaffelhuber, A model for learning and imprinting with finite and infinite memory range. Kybernetika. ,vol. 12, pp. 229- 236 ,(1973) , 10.1007/BF00270576
E. Pfaffelhuber, Learning and information theory. International Journal of Neuroscience. ,vol. 3, pp. 83- 88 ,(1972) , 10.3109/00207457209147016
Robert R. Bush, Frederick Mosteller, A Mathematical Model for Simple Learning Psychological Review. ,vol. 58, pp. 313- 323 ,(1951) , 10.1037/H0054388
E. Pfaffelhuber, P. S. Damle, Mathematical learning models and modifiable synapses. International Journal of Neuroscience. ,vol. 6, pp. 35- 36 ,(1973) , 10.3109/00207457309147184
Solomon Kullback, Information Theory and Statistics ,(1959)