Invariants of Relative Right and Contact Equivalences

作者: Imran Ahmed , Maria Aparecida Soares Ruas

DOI:

关键词: Equivalence relationMathematicsArbitrary functionAlgebraPure mathematicsFinitely-generated abelian groupHolomorphic functionTangentVector fieldInvariant (mathematics)Gravitational singularity

摘要: We study holomorphic function germs under equivalence relations that preserve an analytic variety. show two quasihomogeneous polynomials, not necessarily with isolated singularities, having isomorphic relative Milnor algebras are right equivalent. Under the condition module of vector fields tangent to variety is finitely generated, we also Tjurina algebra a complete invariant for classification arbitrary respect contact equivalence. This version well known result by Mather and Yau.

参考文章(8)
Eugenii Shustin, Christoph Lossen, Gert-martin Greuel, Introduction to Singularities and Deformations ,(2007)
Vladimir Arnold, Dynamical systems. VI, Singularity theory Encyclopaedia of mathematical sciences. ,(1993)
J.W. Bruce, R.M. Roberts, Critical points of functions on analytic varieties Topology. ,vol. 27, pp. 57- 90 ,(1988) , 10.1016/0040-9383(88)90007-9
James Damon, On the freeness of equisingular deformations of plane curve singularities Topology and its Applications. ,vol. 118, pp. 31- 43 ,(2002) , 10.1016/S0166-8641(01)00040-2
John N. Mather, Stability of $C^\infty $ mappings, IV. Classification of stable germs by $R$-algebras Publications Mathématiques de l'IHÉS. ,vol. 37, pp. 223- 248 ,(1969) , 10.1007/BF02684889
John N. Mather, Stephen S. -T. Yau, Classification of isolated hypersurface singularities by their moduli algebras Inventiones Mathematicae. ,vol. 69, pp. 243- 251 ,(1982) , 10.1007/BF01399504
Kyoji Saito, Quasihomogene isolierte Singularitäten von Hyperflächen. Inventiones Mathematicae. ,vol. 14, pp. 123- 142 ,(1971) , 10.1007/BF01405360
Michel Granger, Mathias Schulze, On the formal structure of logarithmic vector fields Compositio Mathematica. ,vol. 142, pp. 765- 778 ,(2006) , 10.1112/S0010437X06001916