Graph Embeddings and Laplacian Eigenvalues

作者: Stephen Guattery , Gary L. Miller

DOI: 10.1137/S0895479897329825

关键词: CombinatoricsMatrix (mathematics)Laplace operatorLaplacian matrixEmbeddingMatrix representationEigenvalues and eigenvectorsDiscrete mathematicsDirichlet boundary conditionMathematicsInverse

摘要: Graph embeddings are useful in bounding the smallest nontrivial eigenvalues of Laplacian matrices from below. For an n× n Laplacian, these embedding methods can be characterized as follows: The lower bound is based on a clique embedding into the underlying graph of the Laplacian. An embedding can be represented by a matrix Γ; the best possible bound based on this embedding is n/\max(Γ^TΓ), where \max indicates the largest eigenvalue of the specified matrix. However, the best bounds produced by embedding …

参考文章(26)
K.D. Gremban, G.L. Miller, M. Zagha, Performance evaluation of a new parallel preconditioner international parallel processing symposium. pp. 65- 69 ,(1995) , 10.1109/IPPS.1995.395915
Nabil Kahale, A Semidefinite Bound for Mixing Rates of Markov Chains integer programming and combinatorial optimization. pp. 190- 203 ,(1996) , 10.1007/3-540-61310-2_15
Béla Bollobás, Graph Theory: An Introductory Course ,(1979)
Norman Biggs, Algebraic Graph Theory Cambridge University Press. ,(1974) , 10.1017/CBO9780511608704
C. Berge, Graphs and hypergraphs ,(1973)
Miroslav Fiedler, Algebraic connectivity of graphs Czechoslovak Mathematical Journal. ,vol. 23, pp. 298- 305 ,(1973) , 10.21136/CMJ.1973.101168
Louis A Hageman, David Matheson Young, Applied Iterative Methods ,(2004)
Noga Alon, Eigen values and expanders Combinatorica. ,vol. 6, pp. 83- 96 ,(1986) , 10.1007/BF02579166
A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, The electrical resistance of a graph captures its commute and cover times Proceedings of the twenty-first annual ACM symposium on Theory of computing - STOC '89. pp. 574- 586 ,(1989) , 10.1145/73007.73062
Stephen Guattery, Gary L. Miller, On the performance of spectral graph partitioning methods symposium on discrete algorithms. pp. 233- 242 ,(1995) , 10.5555/313651.313702