A TIME-SERIES PRE-PROCESSING METHODOLOGY FOR BIOSIGNAL CLASSIFICATION USING STATISTICAL FEATURE EXTRACTION

作者: Simon Fong , Kun Lan , Paul Sun , Sabah Mohammed , Jinan Fiaidhi

DOI: 10.2316/P.2013.791-100

关键词: Pattern recognitionClass (biology)Multivariate statisticsStatistical classificationPiecewiseArtificial intelligenceData miningWaveletFeature extractionUnivariateBiosignalComputer science

摘要: Biosignal classification is an important diagnosis tool in biomedical application that helps medical experts to automatically classify whether a sample of biosignal under test/monitor belongs the normal type or otherwise. Most biosignals are stochastic and nonstationary nature, means their values timedependent statistics vary over different points time. However, most algorithms data mining designed work with possess multiple attributes order capture non-linear relationships between predicted target class. Therefore it has been crucial research topic for transforming univariate time-series multivariate dataset fit into algorithms. For this, we propose pre-processing methodology, called Statistical Feature Extraction (SFX). Using SFX can faithfully remodel statistical characteristics via sequence piecewise transform functions. The new methodology tested through simulation experiments three representative types biosignals, namely EEG, ECG EMG. yield encouraging results supporting fact indeed produces better performance than traditional analyses techniques like Wavelets LPC-CC.

参考文章(17)
Benjamin Auffarth, Maite López, Jesús Cerquides, Comparison of redundancy and relevance measures for feature selection in tissue classification of CT images international conference on data mining. pp. 248- 262 ,(2010) , 10.1007/978-3-642-14400-4_20
K. Ishino, M. Hagiwara, A feeling estimation system using a simple electroencephalograph systems, man and cybernetics. ,vol. 5, pp. 4204- 4209 ,(2003) , 10.1109/ICSMC.2003.1245645
Cristina Stolojescu, ECG Signals Classification using Statistical and Time-Frequency Features Applied Medical Informatics. ,vol. 30, pp. 16- 22 ,(2012)
R Acharya, Ashwin Kumar, PS Bhat, CM Lim, SS Lyengar, N Kannathal, ShankarM Krishnan, None, Classification of cardiac abnormalities using heart rate signals. Medical & Biological Engineering & Computing. ,vol. 42, pp. 288- 293 ,(2004) , 10.1007/BF02344702
João Bernardes, Carlos Moura, Joaquim P. Marques de Sa, Luis Pereira Leite, The Porto system for automated cardiotocographic signal analysis Journal of Perinatal Medicine. ,vol. 19, pp. 61- 65 ,(1991) , 10.1515/JPME.1991.19.1-2.61
Norden E. Huang, Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, Henry H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 454, pp. 903- 995 ,(1998) , 10.1098/RSPA.1998.0193
R. Bousseljot, D. Kreiseler, A. Schnabel, Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet Biomedizinische Technik. ,vol. 40, pp. 317- 318 ,(2009) , 10.1515/BMTE.1995.40.S1.317
Simon Fong, Yang Hang, Sabah Mohammed, Jinan Fiaidhi, Stream-based Biomedical Classification Algorithms for Analyzing Biosignals Journal of Information Processing Systems. ,vol. 7, pp. 717- 732 ,(2011) , 10.3745/JIPS.2011.7.4.717
K Englehart, B Hudgins, P.A Parker, M Stevenson, Classification of the myoelectric signal using time-frequency based representations Medical Engineering & Physics. ,vol. 21, pp. 431- 438 ,(1999) , 10.1016/S1350-4533(99)00066-1