The physical content of the singularity expansion method

作者: Herbert Űberall , Guillermo C. Gaunaurd

DOI: 10.1063/1.92730

关键词: Classical mechanicsSingularitySuperposition principleSeries expansionWavelengthScatteringWave propagationPhysicsCreeping waveScattering amplitudePhysics and Astronomy (miscellaneous)

摘要: The singularity expansion method describes the echo return from pulsed radar signals in terms of a Prony‐series superposition damped sinusoids. These are obtained as residues poles scattering amplitude complex frequency plane. For example conducting sphere, we show that these can be regrouped into infinite subsets whose sums represent individual creeping waves, nth pole subseries corresponding to resonance caused by standing wave with n+1/2 wavelength spanning circumference. Prony thus appears simply mathematical device which synthesizes physical wave.

参考文章(9)
George T. Ruck, Donald E. Barrick, Clarence K. Krichbaum, William D. Stuart, Radar Cross Section Handbook ,(2013)
Thomas B. A Senior, Piergiorgio L. E Uslenghi, John J Bowman, Electromagnetic and acoustic scattering by simple shapes Published in <b>1969</b> in Amsterdam by North-Holland. ,(1970)
Transient Electromagnetic Fields Berlin and New York. ,vol. 10, ,(1976) , 10.1007/3-540-07553-4
R. G. Lerner, G. L. Trigg, Robert T. Beyer, Encyclopedia of Physics ,(1990)
Roland Bulirsch, Josef Stoer, Introduction To Numerical Analysis ,(1956)
Walter Franz, Über die Greenschen Funktionen des Zylinders und der Kugel Zeitschrift für Naturforschung A. ,vol. 9, pp. 705- 716 ,(1954) , 10.1515/ZNA-1954-0901
J. Murphy, P. Moser, A. Nagl, H. Uberall, A surface wave interpretation for the resonances of a dielectric sphere IEEE Transactions on Antennas and Propagation. ,vol. 28, pp. 924- 927 ,(1980) , 10.1109/TAP.1980.1142410
Frederic Howell Miller, Partial Differential Equations ,(1941)