Internal optimization of the texture component approximation method

作者: D Nikolayev , T Lychagina , M Rusetsky , A Ulyanenkov , A Sasaki

DOI: 10.1088/1757-899X/82/1/012007

关键词: MathematicsTrust regionFunction (mathematics)Mathematical optimizationApplied mathematicsOrientation (computer vision)Square (algebra)Distribution functionOptimization problemLinear combinationPosition (vector)

摘要: The component approximation method for the reconstruction of orientation distribution function (ODF) is based on assumption that texture could be presented as a weighted linear combination distributions depending parameters, which are related to position bell shaped in space and dispersion. uses minimization procedure obtain values ODF parameters. Traditionally, mean- square deviation measured recalculated pole figures minimized. However, quantitative measure fit RP value differs from mean-square deviation. In present work it suggested minimize We using Trust Region solving non-linear optimization problem. convergences proposed different minimized functional compared. also illustrate usage objective modeling data cubic crystalline symmetry. This study fulfilled new RIGAKU software analysis.

参考文章(7)
Nicholas I. M. Gould, Philippe L. Toint, Andrew R. Conn, Trust Region Methods ,(1987)
Günter Wassermann, Johanna Grewen, Texturen metallischer Werkstoffe Springer-Verlag. ,(1962) , 10.1007/978-3-662-13128-2
Nathan R. Barton, Donald E. Boyce, Paul R. Dawson, Pole Figure Inversion Using Finite Elements Over Rodrigues Space Textures and Microstructures. ,vol. 35, pp. 113- 144 ,(2002) , 10.1080/073033002100000182
T. A. Lychagina, D. I. Nikolayev, Model investigation of the grain number to apply quantitative texture analysis averaging Physica Status Solidi (a). ,vol. 195, pp. 322- 334 ,(2003) , 10.1002/PSSA.200305925
T. I. Bucharova, T. I. Savyolova, Application of Normal Distributions on SO(3) and Sn for Orientation Distribution Function Approximation Textures and Microstructures. ,vol. 21, pp. 161- 176 ,(1993) , 10.1155/TSM.21.161
R. Hielscher, H. Schaeben, A novel pole figure inversion method: specification of the MTEX algorithm Journal of Applied Crystallography. ,vol. 41, pp. 1024- 1037 ,(2008) , 10.1107/S0021889808030112