Possibility of determining cosmological parameters from measurements of gravitational waves emitted by coalescing, compact binaries

作者: Dragoljub Marković

DOI: 10.1103/PHYSREVD.48.4738

关键词: CombinatoricsNoise levelObservation timeLow densityHigh densityPhysicsQuantum mechanicsRedshiftGravitational waveOmega

摘要: We explore the feasibility of using LIGO and/or VIRGO gravitational-wave measurements coalescing, neutron-star-neutron-star (NS-NS) binaries and black-hole-neutron-star (BH-NS) at cosmological distances to determine parameters our Universe. From observed gravitational waveforms one can infer, as direct observables, luminosity distance $D$ source binary's two "redshifted masses," ${M}_{1}^{\ensuremath{'}}\ensuremath{\equiv}{M}_{1}(1+z)$ ${M}_{2}^{\ensuremath{'}}\ensuremath{\equiv}{M}_{2}(1+z)$, where ${M}_{i}$ are actual masses $z\ensuremath{\equiv}\frac{\ensuremath{\Delta}\ensuremath{\lambda}}{\ensuremath{\lambda}}$ is redshift. Assuming that NS mass spectrum sharply peaked about $1.4{M}_{\ensuremath{\bigodot}}$, binary pulsar x-ray observations suggest, redshift be estimated $z=\frac{{M}_{\mathrm{NS}}^{\ensuremath{'}}}{1.4{M}_{\ensuremath{\bigodot}}}\ensuremath{-}1$. The distance-redshift relation $D(z)$ for Universe strongly dependent on its [the Hubble constant ${H}_{0}$, or ${h}_{0}\ensuremath{\equiv}\frac{{H}_{0}}{100}$ km ${\mathrm{s}}^{\ensuremath{-}1}$M${\mathrm{pc}}^{\ensuremath{-}1}$, mean density ${\ensuremath{\rho}}_{m}$, parameter ${\ensuremath{\Omega}}_{0}\ensuremath{\equiv}(\frac{8\ensuremath{\pi}}{3{H}_{0}^{2}}){\ensuremath{\rho}}_{m}$, $\ensuremath{\Lambda}$, ${\ensuremath{\lambda}}_{0}\ensuremath{\equiv}\frac{\ensuremath{\Lambda}}{(3{H}_{0}^{2})}$], so by a statistical study (necessarily noisy) $z$ large number binaries, deduce parameters. various noise sources will plague such discussed estimated, accuracies inferred determined functions detectors' characteristics, observed, neutron-star spectrum. dominant error intrinsic noise, though stochastic lensing waves intervening matter might significantly influence ${\ensuremath{\lambda}}_{0}$, when detectors reach "advanced" stages development. errors from BH-NS described following rough analytic fits: $\frac{\ensuremath{\Delta}{h}_{0}}{{h}_{0}}\ensuremath{\simeq}0.02(\frac{N}{{h}_{0}}){(\ensuremath{\tau}\mathcal{R})}^{\ensuremath{-}\frac{1}{2}}$ (for $\frac{N}{{h}_{0}}\ensuremath{\lesssim}2$), $N$ detector's level ($\frac{\mathrm{strain}}{\sqrt{\mathrm{Hz}}}$) in units "advanced LIGO" level, $\mathcal{R}$ event rate best-estimate value, 100 ${\mathrm{yr}}^{\ensuremath{-}1}$ G${\mathrm{pc}}^{\ensuremath{-}3}$, $\ensuremath{\tau}$ observation time years. In "high density" universe (${\ensuremath{\Omega}}_{0}=1$, ${\ensuremath{\lambda}}_{0}=0$), $\ensuremath{\Delta}{\ensuremath{\Omega}}_{0}\ensuremath{\simeq}0.3{(\frac{N}{{h}_{0}})}^{2}{(\ensuremath{\tau}\mathcal{R})}^{\ensuremath{-}\frac{1}{2}}$, $\ensuremath{\Delta}{\ensuremath{\lambda}}_{0}\ensuremath{\simeq}0.4{(\frac{N}{{h}_{0}})}^{1.5}{(\ensuremath{\tau}\mathcal{R})}^{\ensuremath{-}\frac{1}{2}}$, $\frac{N}{{h}_{0}}\ensuremath{\lesssim}1$. "low (${\ensuremath{\Omega}}_{0}=0.2$, $\ensuremath{\Delta}{\ensuremath{\Omega}}_{0}\ensuremath{\simeq}0.5{(\frac{N}{{h}_{0}})}^{3}{(\ensuremath{\tau}\mathcal{R})}^{\ensuremath{-}\frac{1}{2}}$, $\ensuremath{\Delta}{\ensuremath{\lambda}}_{0}\ensuremath{\simeq}0.7{(\frac{N}{{h}_{0}})}^{2.5}{(\ensuremath{\tau}\mathcal{R})}^{\ensuremath{-}\frac{1}{2}}$, also These formulas indicate that, if rates those currently (\ensuremath{\sim}3 per year out 200 Mpc), then planned get sensitive so-called detector level" (presumably early 2000s), interesting begin.

参考文章(19)
Alex Abramovici, William E Althouse, Ronald WP Drever, Yekta Gürsel, Seiji Kawamura, Frederick J Raab, David Shoemaker, Lisa Sievers, Robert E Spero, Kip S Thorne, Rochus E Vogt, Rainer Weiss, Stanley E Whitcomb, Michael E Zucker, None, LIGO: The Laser Interferometer Gravitational-Wave Observatory. Science. ,vol. 256, pp. 325- 333 ,(1992) , 10.1126/SCIENCE.256.5055.325
Carlo Bradaschia, R Del Fabbro, A Di Virgilio, A Giazotto, H Kautzky, V Montelatici, D Passuello, A Brillet, O Cregut, P Hello, CN Man, PT Manh, A Marraud, D Shoemaker, JY Vinet, Fabrizio Barone, L Di Fiore, L Milano, G Russo, JM Aguirregabiria, H Bel, JP Duruisseau, G Le Denmat, Ph Tourrenc, M Capozzi, M Longo, M Lops, I Pinto, G Rotoli, T Damour, S Bonazzola, JA Marck, Y Gourghoulon, LE Holloway, F Fuligni, V Iafolla, G Natale, None, The VIRGO Project: A wide band antenna for gravitational wave detection Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment. ,vol. 289, pp. 518- 525 ,(1990) , 10.1016/0168-9002(90)91525-G
Ramesh Narayan, Tsvi Piran, Amotz Shemi, Neutron Star and Black Hole Binaries in the Galaxy The Astrophysical Journal. ,vol. 379, ,(1991) , 10.1086/186143
Bernard F. Schutz, Determining the Hubble constant from gravitational wave observations Nature. ,vol. 323, pp. 310- 311 ,(1986) , 10.1038/323310A0
A. Krolak, Bernard F. Schutz, Coalescing binaries—Probe of the universe General Relativity and Gravitation. ,vol. 19, pp. 1163- 1171 ,(1987) , 10.1007/BF00759095
B F Schutz, Gravitational wave sources and their detectability Classical and Quantum Gravity. ,vol. 6, pp. 1761- 1780 ,(1989) , 10.1088/0264-9381/6/12/006
Curt Cutler, Theocharis A. Apostolatos, Lars Bildsten, Lee Smauel Finn, Eanna E. Flanagan, Daniel Kennefick, Dragoljub M. Markovic, Amos Ori, Eric Poisson, Gerald Jay Sussman, Kip S. Thorne, The Last three minutes: issues in gravitational wave measurements of coalescing compact binaries Physical Review Letters. ,vol. 70, pp. 2984- 2987 ,(1993) , 10.1103/PHYSREVLETT.70.2984
Lee Samuel Finn, David F. Chernoff, Observing binary inspiral in gravitational radiation: One interferometer. Physical Review D. ,vol. 47, pp. 2198- 2219 ,(1993) , 10.1103/PHYSREVD.47.2198
Lawrence E. Kidder, Clifford M. Will, Alan G. Wiseman, Spin effects in the inspiral of coalescing compact binaries. Physical Review D. ,vol. 47, ,(1993) , 10.1103/PHYSREVD.47.R4183