Rigorous polynomial approximation using taylor models in Coq

作者: Nicolas Brisebarre , Mioara Joldeş , Érik Martin-Dorel , Micaela Mayero , Jean-Michel Muller

DOI: 10.1007/978-3-642-28891-3_9

关键词: Proof assistantFocus (optics)Carry (arithmetic)Real-valued functionComputer scienceType (model theory)PolynomialInterface (Java)AlgorithmParameterized complexityAlgebra

摘要: One of the most common and practical ways representing a real function on machines is by using polynomial approximation. It then important to properly handle error introduced such an The purpose this work offer guaranteed bounds for specific kind rigorous approximation called Taylor model. We carry out in Coq proof assistant, with special focus genericity efficiency our implementation. give abstract interface approximations, parameterized type coefficients implementation polynomials, we instantiate case models interval coefficients, while providing all machinery computing them. compare performances those Sollya tool, which contains written C. This milestone long-term goal fully formally proved efficient models.

参考文章(50)
Sylvain Chevillard, Mioara Joldeş, Christoph Lauter, Sollya: An Environment for the Development of Numerical Codes Mathematical Software – ICMS 2010. ,vol. 6327, pp. 28- 31 ,(2010) , 10.1007/978-3-642-15582-6_5
Francisco Cháves, Utilisation et certification de l'arithmétique d'intervalles dans un assistant de preuves Ecole normale supérieure de lyon - ENS LYON. ,(2007)
Arnold Neumaier, Taylor Forms—Use and Limits Reliable Computing. ,vol. 9, pp. 43- 79 ,(2003) , 10.1023/A:1023061927787
Sylvain Chevillard, Évaluation efficace de fonctions numériques - Outils et exemples Université de Lyon ; Ecole normale supérieure de lyon - ENS LYON. ,(2009)
Yves Bertot, Pierre Castran, Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions Springer Publishing Company, Incorporated. pp. 470- ,(2010)
Roland Zumkeller, Formal Global Optimisation with Taylor Models Automated Reasoning. pp. 408- 422 ,(2006) , 10.1007/11814771_35
Herman Geuvers, Milad Niqui, Constructive Reals in Coq: Axioms and Categoricity types for proofs and programs. pp. 79- 95 ,(2000) , 10.1007/3-540-45842-5_6
Alexandre Benoit, Frédéric Chyzak, Alexis Darrasse, Stefan Gerhold, Marc Mezzarobba, Bruno Salvy, The Dynamic Dictionary of Mathematical Functions (DDMF) Mathematical Software – ICMS 2010. ,vol. 6327, pp. 35- 41 ,(2010) , 10.1007/978-3-642-15582-6_7
Maribel Fernández, Murdoch J. Gabbay, Curry-style types for nominal terms types for proofs and programs. pp. 125- 139 ,(2006) , 10.1007/978-3-540-74464-1_9