作者: Hong Kong , Jianzhong Wang
DOI:
关键词: Invertible matrix 、 Scale (ratio) 、 Matrix (mathematics) 、 Matrix polynomial 、 Mathematics 、 Linear independence 、 Scaling 、 Discrete mathematics 、 Distribution (mathematics) 、 Combinatorics 、 Polynomial matrix
摘要: A scaling vector φ = (φ1, · , φr) is a compactly supported vector-valued distribution that satisfies matrix refinement equation φ(x) P Pkφ(2x−k), where (Pk) finite sequence. We call (z) 1 2 Pkz k the symbol of φ. said to be two-scale similar polynomial Q(z) if there an invertible T (z2)Q(z)T−1(z). called factor (z). In this paper we characterize linear independence and accuracy associated with via its symbol. The necessary sufficient conditions for either or are given. relation between them also revealed.