作者: Mari Ostendorf , David D. Palmer
DOI:
关键词: Artificial intelligence 、 Sequence 、 Word (computer architecture) 、 Speech recognition 、 Estimation 、 Information extraction 、 Named entity 、 Range (mathematics) 、 Computer science 、 Pattern recognition
摘要: This paper describes experiments in improving word confidence estimation using document- and task-level features of the hypothesized sequence from a recognizer. The improved estimates are shown to improve information extraction performance, specifically named entity (NE) recognition. detected names can then be used further multi-pass NE recognition framework.