Iterative Imputation of Missing Data Using Auto-Encoder Dynamics

作者: Marek Śmieja , Maciej Kołomycki , Łukasz Struski , Mateusz Juda , Mário A. T. Figueiredo

DOI: 10.1007/978-3-030-63836-8_22

关键词: Missing data imputationAutoencoderVector fieldImputation (statistics)AlgorithmComputer scienceGradient descentMissing data

摘要: This paper introduces an approach to missing data imputation based on deep auto-encoder models, adequate high-dimensional exhibiting complex dependencies, such as images. The method exploits the properties of vector field associated auto-encoder, which allows approximate gradient log-density from its reconstruction error, we propose a projected ascent algorithm obtain conditionally most probable estimate values. Our does not require any specialized training procedure and can be used together with model trained complete in classical way. Experiments performed benchmark datasets show that imputations produced by our are sharp realistic.

参考文章(24)
Maria Carolina Monard, Gustavo E. A. P. A. Batista, A Study of K-Nearest Neighbour as an Imputation Method. HIS. pp. 251- 260 ,(2002)
Ziwei Liu, Ping Luo, Xiaogang Wang, Xiaoou Tang, Deep Learning Face Attributes in the Wild 2015 IEEE International Conference on Computer Vision (ICCV). pp. 3730- 3738 ,(2015) , 10.1109/ICCV.2015.425
Melissa J. Azur, Elizabeth A. Stuart, Constantine Frangakis, Philip J. Leaf, Multiple Imputation by Chained Equations: What is it and how does it work? International Journal of Methods in Psychiatric Research. ,vol. 20, pp. 40- 49 ,(2011) , 10.1002/MPR.329
Max Welling, Diederik P Kingma, Auto-Encoding Variational Bayes international conference on learning representations. ,(2014)
D.M. Titterington, J. Sedransk, Imputation of missing values using density estimation Statistics & Probability Letters. ,vol. 8, pp. 411- 418 ,(1989) , 10.1016/0167-7152(89)90020-5
Pascal Vincent, A connection between score matching and denoising autoencoders Neural Computation. ,vol. 23, pp. 1661- 1674 ,(2011) , 10.1162/NECO_A_00142
, Generative Adversarial Nets neural information processing systems. ,vol. 27, pp. 2672- 2680 ,(2014) , 10.3156/JSOFT.29.5_177_2
Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition Proceedings of the IEEE. ,vol. 86, pp. 2278- 2324 ,(1998) , 10.1109/5.726791
Stef van Buuren, Karin Groothuis-Oudshoorn, mice: Multivariate Imputation by Chained Equations inR Journal of Statistical Software. ,vol. 45, pp. 1- 67 ,(2011) , 10.18637/JSS.V045.I03