Complex Question Answering: Homogeneous or Heterogeneous, Which Ensemble Is Better?

作者: Yllias Chali , Sadid A. Hasan , Mustapha Mojahid

DOI: 10.1007/978-3-319-07983-7_21

关键词: Machine learningConditional random fieldComputer sciencePrinciple of maximum entropyHidden Markov modelEnsemble learningArtificial intelligenceTask (computing)Complex questionSupport vector machineBase (topology)

摘要: This paper applies homogeneous and heterogeneous ensembles to perform the complex question answering task. For ensemble, we employ Support Vector Machines (SVM) as learning algorithm use a Cross-Validation Committees (CVC) approach form several base models. We SVM, Hidden Markov Models (HMM), Conditional Random Fields (CRF), Maximum Entropy (MaxEnt) techniques build different models for ensemble. Experimental analyses demonstrate that both ensemble methods outperform conventional systems is better.

参考文章(16)
Satoshi Sekine, Chikashi Nobata, Sentence Extraction with Information Extraction technique. In: the Document Understanding Conference; 2001.. ,(2001)
Shafiq R. Joty, A SVM-Based Ensemble Approach to Multi-Document Summarization canadian conference on artificial intelligence. pp. 199- 202 ,(2009) , 10.1007/978-3-642-01818-3_23
Thomas G. Dietterich, Ensemble Methods in Machine Learning Multiple Classifier Systems. pp. 1- 15 ,(2000) , 10.1007/3-540-45014-9_1
B. Ribeiro, C. Silva, Rare class text categorization with SVM ensemble Przegląd Elektrotechniczny. pp. 28- 31 ,(2006)
Thorsten Joachims, Making large scale SVM learning practical Technical reports. ,(1999) , 10.17877/DE290R-14262
BSCH OLKOPF, C Burges, A Smola, Advances in kernel methods: support vector learning international conference on neural information processing. ,(1999) , 10.5555/299094
Niall Rooney, Alexey Tsymbal, Sarab S. Anand, David W. Patterson, Random subspacing for regression ensembles the florida ai research society. pp. 532- 537 ,(2004)
Jón Atli Benediktsson, Fabio Roli, Josef Kittler, Multiple Classifier Systems ,(2008)
BAMBANG PARMANTO, PAUL W MUNRO, HOWARD R DOYLE, Reducing Variance of Committee Prediction with Resampling Techniques Connection Science. ,vol. 8, pp. 405- 426 ,(1996) , 10.1080/095400996116848
Bambang Parmanto, Howard R. Doyle, Paul W. Munro, Improving Committee Diagnosis with Resampling Techniques neural information processing systems. ,vol. 8, pp. 882- 888 ,(1995)