Theory of defect motion in 2D passive and active nematic liquid crystals

作者: Xingzhou Tang , Jonathan V. Selinger

DOI: 10.1039/C8SM01901K

关键词: Liquid crystalRotation around a fixed axisViscosityTopological defectDynamics (mechanics)Condensed matter physicsCoupling (physics)BackflowDragMaterials science

摘要: The motion of topological defects is an important feature the dynamics all liquid crystals, and especially conspicuous in active crystals. Understanding defect a challenging theoretical problem, because orientational order coupled with backflow fluid, crystal has several distinct viscosity coefficients. Here, we suggest coarse-grained, variational approach, which describes as effective `particles.' For passive theory shows how drag depends on orientation, coupling between translational rotational motion. provides alternative way to describe induced by activity coefficient.

参考文章(54)
André M. Sonnet, Epifanio G. Virga, Dissipative Ordered Fluids: Theories for Liquid Crystals ,(2012)
I.W. Stewart, The static and dynamic continuum theory of liquid crystals Taylor and Francis. ,(2004)
L. M. Pismen, Dynamics of defects in active nematics arXiv: Soft Condensed Matter. ,(2013) , 10.1103/PHYSREVE.88.050502
Arthur J. Vromans, Luca Giomi, Orientational properties of nematic disclinations. Soft Matter. ,vol. 12, pp. 6490- 6495 ,(2016) , 10.1039/C6SM01146B
Stephen J. DeCamp, Gabriel S. Redner, Aparna Baskaran, Michael F. Hagan, Zvonimir Dogic, Orientational order of motile defects in active nematics Nature Materials. ,vol. 14, pp. 1110- 1115 ,(2015) , 10.1038/NMAT4387
Leo Radzihovsky, Anomalous Energetics and Dynamics of Moving Vortices. Physical Review Letters. ,vol. 115, pp. 247801- 247801 ,(2015) , 10.1103/PHYSREVLETT.115.247801
M. J. Bowick, L. Chandar, E. A. Schiff, A. M. Srivastava, The Cosmological Kibble Mechanism in the Laboratory: String Formation in Liquid Crystals Science. ,vol. 263, pp. 943- 945 ,(1994) , 10.1126/SCIENCE.263.5149.943
I. CHUANG, R. DURRER, N. TUROK, B. YURKE, Cosmology in the Laboratory: Defect Dynamics in Liquid Crystals Science. ,vol. 251, pp. 1336- 1342 ,(1991) , 10.1126/SCIENCE.251.4999.1336
L. M. Pismen, J. D. Rodriguez, Mobility of singularities in the dissipative Ginzburg-Landau equation. Physical Review A. ,vol. 42, pp. 2471- 2474 ,(1990) , 10.1103/PHYSREVA.42.2471
C. Blanc, D. Svenšek, S. Žumer, M. Nobili, Dynamics of nematic liquid crystal disclinations: the role of the backflow. Physical Review Letters. ,vol. 95, pp. 097802- ,(2005) , 10.1103/PHYSREVLETT.95.097802