The Fractal Structure of the Quantum Space-Time

作者: Laurent Nottale

DOI: 10.1007/978-3-540-47582-8_8

关键词: Fractal cosmologyFractalQuantum spacetimeQuantum gravityOpen quantum systemScale relativityPhysicsFractal dimensionClassical mechanicsQuantum geometry

摘要: We report here on the present state of an attempt at understanding micro-physics by basing ourselves a ‘principle scale relativity’, according to which laws physics should apply systems reference whatever their scale. The continuity but non differentiability quantum mechanical particle paths, occurrence infinities in field theories and universal length time dependence measurement results implied Heisenberg’s relations have led us, among other arguments, suggest achievement such principle using mathematical tool fractals (Nottale 1989). concept continuous self-avoiding fractal space-time is worked out: arguments are given for generally describing them as families Riemannian space-times whose curvature tends infinity when approaches zero. recall some basic already obtained this quest: dimension trajectories jumps from 1 2 all 4 coordinates, with fractal/non transition occurring around de Broglie’s time; conversely Heisenberg may be consequence assumed structures; point particles following curves naturally endowed spin. develop interpretation wave-particle duality property geodesical lines examplify it Young’s hole Einstein-Podolsky-Rosen experiments. Finally possible consequences concerning gravitation recalled, suggestion that Newton’s law break down active gravitational masses smaller than Planck mass.

参考文章(18)
Lev Davidovich Landau, Lev Petrovich Pitaevskii, Evgenii Mikhailovich Lifshitz, Vladimir B Berestetskii, Relativistic quantum theory Addison-Wesley/W. A. Benjamin, Inc., Reading, MA. ,(1971)
Albert Roach Hibbs, Richard Phillips Feynman, Quantum Mechanics and Path Integrals ,(1965)
Kenneth G. Wilson, Problems in Physics with many Scales of Length Scientific American. ,vol. 241, pp. 158- 179 ,(1979) , 10.1038/SCIENTIFICAMERICAN0879-158
Roland Omn�s, Logical reformulation of quantum mechanics. I. Foundations Journal of Statistical Physics. ,vol. 53, pp. 893- 932 ,(1988) , 10.1007/BF01014230
Alain Aspect, Jean Dalibard, Gérard Roger, Experimental Test of Bell's Inequalities Using Time- Varying Analyzers Physical Review Letters. ,vol. 49, pp. 1804- 1807 ,(1982) , 10.1103/PHYSREVLETT.49.1804
L. F. Abbott, Mark B. Wise, Dimension of a Quantum-Mechanical Path. American Journal of Physics. ,vol. 49, pp. 37- 39 ,(1981) , 10.1119/1.12657
L. Nottale, Gravitational lensing in observational cosmology Annales de Physique. ,vol. 13, pp. 223- 260 ,(1988) , 10.1051/ANPHYS:01988001304022300
F. Cannata, L. Ferrari, Dimensions of relativistic quantum mechanical paths American Journal of Physics. ,vol. 56, pp. 721- 725 ,(1988) , 10.1119/1.15508
L. Nottale, J. Schneider, Fractals and nonstandard analysis Journal of Mathematical Physics. ,vol. 25, pp. 1296- 1300 ,(1984) , 10.1063/1.526285
E. Campesino-Romeo, J.C. D'Olivo, M. Socolovsky, Hausdorff dimension for the quantum harmonic oscillator Physics Letters A. ,vol. 89, pp. 321- 324 ,(1982) , 10.1016/0375-9601(82)90182-7